Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Cancers (Basel) ; 15(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37509252

ABSTRACT

Advanced MRI methods and PET using radiolabelled amino acids provide valuable information, in addition to conventional MR imaging, for brain tumour diagnostics. These methods are particularly helpful in challenging situations such as the differentiation of malignant processes from benign lesions, the identification of non-enhancing glioma subregions, the differentiation of tumour progression from treatment-related changes, and the early assessment of responses to anticancer therapy. The debate over which of the methods is preferable in which situation is ongoing, and has been addressed in numerous studies. Currently, most radiology and nuclear medicine departments perform these examinations independently of each other, leading to multiple examinations for the patient. The advent of hybrid PET/MRI allowed a convergence of the methods, but to date simultaneous imaging has reached little relevance in clinical neuro-oncology. This is partly due to the limited availability of hybrid PET/MRI scanners, but is also due to the fact that PET is a second-line examination in brain tumours. PET is only required in equivocal situations, and the spatial co-registration of PET examinations of the brain to previous MRI is possible without disadvantage. A key factor for the benefit of PET/MRI in neuro-oncology is a multimodal approach that provides decisive improvements in the diagnostics of brain tumours compared with a single modality. This review focuses on studies investigating the diagnostic value of combined amino acid PET and 'advanced' MRI in patients with cerebral gliomas. Available studies suggest that the combination of amino acid PET and advanced MRI improves grading and the histomolecular characterisation of newly diagnosed tumours. Few data are available concerning the delineation of tumour extent. A clear additive diagnostic value of amino acid PET and advanced MRI can be achieved regarding the differentiation of tumour recurrence from treatment-related changes. Here, the PET-guided evaluation of advanced MR methods seems to be helpful. In summary, there is growing evidence that a multimodal approach can achieve decisive improvements in the diagnostics of cerebral gliomas, for which hybrid PET/MRI offers optimal conditions.

2.
Cancers (Basel) ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884396

ABSTRACT

O-(2-[18F]fluoroethyl)-L-tyrosine (FET) is a widely used amino acid tracer for positron emission tomography (PET) imaging of brain tumours. This retrospective study and survey aimed to analyse our extensive database regarding the development of FET PET investigations, indications, and the referring physicians' rating concerning the role of FET PET in the clinical decision-making process. Between 2006 and 2019, we performed 6534 FET PET scans on 3928 different patients against a backdrop of growing demand for FET PET. In 2019, indications for the use of FET PET were as follows: suspected recurrent glioma (46%), unclear brain lesions (20%), treatment monitoring (19%), and suspected recurrent brain metastasis (13%). The referring physicians were neurosurgeons (60%), neurologists (19%), radiation oncologists (11%), general oncologists (3%), and other physicians (7%). Most patients travelled 50 to 75 km, but 9% travelled more than 200 km. The role of FET PET in decision-making in clinical practice was evaluated by a questionnaire consisting of 30 questions, which was filled out by 23 referring physicians with long experience in FET PET. Fifty to seventy per cent rated FET PET as being important for different aspects of the assessment of newly diagnosed gliomas, including differential diagnosis, delineation of tumour extent for biopsy guidance, and treatment planning such as surgery or radiotherapy, 95% for the diagnosis of recurrent glioma, and 68% for the diagnosis of recurrent brain metastases. Approximately 50% of the referring physicians rated FET PET as necessary for treatment monitoring in patients with glioma or brain metastases. All referring physicians stated that the availability of FET PET is essential and that it should be approved for routine use. Although the present analysis is limited by the fact that only physicians who frequently referred patients for FET PET participated in the survey, the results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for its approval for routine use.

3.
Hum Brain Mapp ; 43(6): 2026-2040, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35044722

ABSTRACT

The growing demand for precise and reliable biomarkers in psychiatry is fueling research interest in the hope that identifying quantifiable indicators will improve diagnoses and treatment planning across a range of mental health conditions. The individual properties of brain networks at rest have been highlighted as a possible source for such biomarkers, with the added advantage that they are relatively straightforward to obtain. However, an important prerequisite for their consideration is their reproducibility. While the reliability of resting-state (RS) measurements has often been studied at standard field strengths, they have rarely been investigated using ultrahigh-field (UHF) magnetic resonance imaging (MRI) systems. We investigated the intersession stability of four functional MRI RS parameters-amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF; representing the spontaneous brain activity), regional homogeneity (ReHo; measure of local connectivity), and degree centrality (DC; measure of long-range connectivity)-in three RS networks, previously shown to play an important role in several psychiatric diseases-the default mode network (DMN), the central executive network (CEN), and the salience network (SN). Our investigation at individual subject space revealed a strong stability for ALFF, ReHo, and DC in all three networks, and a moderate level of stability in fALFF. Furthermore, the internetwork connectivity between each network pair was strongly stable between CEN/SN and moderately stable between DMN/SN and DMN/SN. The high degree of reliability and reproducibility in capturing the properties of the three major RS networks by means of UHF-MRI points to its applicability as a potentially useful tool in the search for disease-relevant biomarkers.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Reproducibility of Results
4.
Brain Connect ; 12(4): 334-347, 2022 05.
Article in English | MEDLINE | ID: mdl-34182786

ABSTRACT

Introduction: Three prominent resting-state networks (rsNW) (default mode network [DMN], salience network [SN], and central executive network [CEN]) are recognized for their important role in several neuropsychiatric conditions. However, our understanding of their relevance in terms of cognition remains insufficient. Materials and Methods: In response, this study aims at investigating the patterns of different network properties (resting-state activity [RSA] and short- and long-range functional connectivity [FC]) in these three core rsNWs, as well as the dynamics of age-associated changes and their relation to cognitive performance in a sample of healthy controls (N = 74) covering a large age span (20-79 years). Using a whole-network based approach, three measures were calculated from the functional magnetic resonance imaging (fMRI) data: amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and degree of network centrality (DC). The cognitive test battery covered the following domains: memory, executive functioning, processing speed, attention, and visual perception. Results: For all three fMRI measures (ALFF, ReHo, and DC), the highest values of spontaneous brain activity (ALFF), short- and long-range connectivity (ReHo, DC) were observed in the DMN and the lowest in the SN. Significant age-associated decrease was observed in the DMN for ALFF and DC, and in the SN for ALFF and ReHo. Significant negative partial correlations were observed for working memory and ALFF in all three networks, as well as for additional cognitive parameters and ALFF in CEN. Discussion: Our results show that higher RSA in the three core rsNWs may have an unfavorable effect on cognition. Conversely, the pattern of network properties in healthy subjects included low RSA and FC in the SN. This complements previous research related to the three core rsNW and shows that the chosen approach can provide additional insight into their function. Impact statement Using a whole network-based approach, our study characterizes the normal patterns (including resting-state activity [RSA], short- and long-range functional connectivity [FC]) of three prominent resting-state networks (rsNW) within the context of age-dependent changes and explores their relevance for different cognitive domains. Our results revealed a pattern with low RSA and FC in the salience network in healthy volunteers, whereas higher RSA, particularly in the central executive network, seemed to have a negative effect on cognition. These results increase the knowledge about the three core rsNWs and the understanding about their relevance for cognition.


Subject(s)
Brain , Cognition , Adult , Aged , Brain/diagnostic imaging , Brain Mapping/methods , Executive Function/physiology , Humans , Magnetic Resonance Imaging/methods , Memory, Short-Term , Middle Aged , Young Adult
5.
Neurooncol Adv ; 3(1): vdab044, 2021.
Article in English | MEDLINE | ID: mdl-34013207

ABSTRACT

BACKGROUND: Radiological differentiation of tumor progression (TPR) from treatment-related changes (TRC) in pretreated glioblastoma is crucial. This study aimed to explore the diagnostic value of diffusion kurtosis MRI combined with information derived from O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) PET for the differentiation of TPR from TRC in patients with pretreated glioblastoma. METHODS: Thirty-two patients with histomolecularly defined and pretreated glioblastoma suspected of having TPR were included in this retrospective study. Twenty-one patients were included in the TPR group, and 11 patients in the TRC group, as assessed by neuropathology or clinicoradiological follow-up. Three-dimensional (3D) regions of interest were generated based on increased 18F-FET uptake using a tumor-to-brain ratio of 1.6. Furthermore, diffusion MRI kurtosis maps were obtained from the same regions of interest using co-registered 18F-FET PET images, and advanced histogram analysis of diffusion kurtosis map parameters was applied to generated 3D regions of interest. Diagnostic accuracy was analyzed by receiver operating characteristic curve analysis and combinations of PET and MRI parameters using multivariate logistic regression. RESULTS: Parameters derived from diffusion MRI kurtosis maps show high diagnostic accuracy, up to 88%, for differentiating between TPR and TRC. Logistic regression revealed that the highest diagnostic accuracy of 94% (area under the curve, 0.97; sensitivity, 94%; specificity, 91%) was achieved by combining the maximum tumor-to-brain ratio of 18F-FET uptake and diffusion MRI kurtosis metrics. CONCLUSIONS: The combined use of 18F-FET PET and MRI diffusion kurtosis maps appears to be a promising approach to improve the differentiation of TPR from TRC in pretreated glioblastoma and warrants further investigation.

6.
Hum Brain Mapp ; 42(13): 4081-4091, 2021 09.
Article in English | MEDLINE | ID: mdl-30604898

ABSTRACT

Head motion is a major source of image artefacts in neuroimaging studies and can lead to degradation of the quantitative accuracy of reconstructed PET images. Simultaneous magnetic resonance-positron emission tomography (MR-PET) makes it possible to estimate head motion information from high-resolution MR images and then correct motion artefacts in PET images. In this article, we introduce a fully automated PET motion correction method, MR-guided MAF, based on the co-registration of multicontrast MR images. The performance of the MR-guided MAF method was evaluated using MR-PET data acquired from a cohort of ten healthy participants who received a slow infusion of fluorodeoxyglucose ([18-F]FDG). Compared with conventional methods, MR-guided PET image reconstruction can reduce head motion introduced artefacts and improve the image sharpness and quantitative accuracy of PET images acquired using simultaneous MR-PET scanners. The fully automated motion estimation method has been implemented as a publicly available web-service.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Positron-Emission Tomography/methods , Adult , Humans , Multimodal Imaging
7.
Eur J Nucl Med Mol Imaging ; 48(6): 1956-1965, 2021 06.
Article in English | MEDLINE | ID: mdl-33241456

ABSTRACT

PURPOSE: Perfusion-weighted MRI (PWI) and O-(2-[18F]fluoroethyl-)-l-tyrosine ([18F]FET) PET are both applied to discriminate tumor progression (TP) from treatment-related changes (TRC) in patients with suspected recurrent glioma. While the combination of both methods has been reported to improve the diagnostic accuracy, the performance of a sequential implementation has not been further investigated. Therefore, we retrospectively analyzed the diagnostic value of consecutive PWI and [18F]FET PET. METHODS: We evaluated 104 patients with WHO grade II-IV glioma and suspected TP on conventional MRI using PWI and dynamic [18F]FET PET. Leakage corrected maximum relative cerebral blood volumes (rCBVmax) were obtained from dynamic susceptibility contrast PWI. Furthermore, we calculated static (i.e., maximum tumor to brain ratios; TBRmax) and dynamic [18F]FET PET parameters (i.e., Slope). Definitive diagnoses were based on histopathology (n = 42) or clinico-radiological follow-up (n = 62). The diagnostic performance of PWI and [18F]FET PET parameters to differentiate TP from TRC was evaluated by analyzing receiver operating characteristic and area under the curve (AUC). RESULTS: Across all patients, the differentiation of TP from TRC using rCBVmax or [18F]FET PET parameters was moderate (AUC = 0.69-0.75; p < 0.01). A rCBVmax cutoff > 2.85 had a positive predictive value for TP of 100%, enabling a correct TP diagnosis in 44 patients. In the remaining 60 patients, combined static and dynamic [18F]FET PET parameters (TBRmax, Slope) correctly discriminated TP and TRC in a significant 78% of patients, increasing the overall accuracy to 87%. A subgroup analysis of isocitrate dehydrogenase (IDH) mutant tumors indicated a superior performance of PWI to [18F]FET PET (AUC = 0.8/< 0.62, p < 0.01/≥ 0.3). CONCLUSION: While marked hyperperfusion on PWI indicated TP, [18F]FET PET proved beneficial to discriminate TP from TRC when PWI remained inconclusive. Thus, our results highlight the clinical value of sequential use of PWI and [18F]FET PET, allowing an economical use of diagnostic methods. The impact of an IDH mutation needs further investigation.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neoplasm Recurrence, Local , Perfusion , Positron-Emission Tomography , Retrospective Studies , Tyrosine
8.
IEEE Trans Med Imaging ; 39(1): 140-151, 2020 01.
Article in English | MEDLINE | ID: mdl-31180843

ABSTRACT

Accurate scatter correction is essential for qualitative and quantitative PET imaging. Until now, scatter correction based on Monte Carlo simulation (MCS) has been recognized as the most accurate method of scatter correction for PET. However, the major disadvantage of MCS is its long computational time, which makes it unfeasible for clinical usage. Meanwhile, single scatter simulation (SSS) is the most widely used method for scatter correction. Nevertheless, SSS has the disadvantage of limited robustness for dynamic measurements and for the measurement of large objects. In this work, a newly developed implementation of MCS using graphics processing unit (GPU) acceleration is employed, allowing full MCS-based scatter correction in clinical 3D brain PET imaging. Starting from the generation of annihilation photons to their detection in the simulated PET scanner, all relevant physical interactions and transport phenomena of the photons were simulated on GPUs. This resulted in an expected distribution of scattered events, which was subsequently used to correct the measured emission data. The accuracy of the approach was validated with simulations using GATE (Geant4 Application for Tomography Emission), and its performance was compared to SSS. The comparison of the computation time between a GPU and a single-threaded CPU showed an acceleration factor of 776 for a voxelized brain phantom study. The speedup of the MCS implemented on the GPU represents a major step toward the application of the more accurate MCS-based scatter correction for PET imaging in clinical routine.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Algorithms , Brain Neoplasms/diagnostic imaging , Equipment Design , Humans , Imaging, Three-Dimensional/methods , Monte Carlo Method , Phantoms, Imaging
9.
J Nucl Med ; 60(10): 1373-1379, 2019 10.
Article in English | MEDLINE | ID: mdl-30850492

ABSTRACT

Assessment of residual tumor after resection of cerebral gliomas can be difficult with MRI and may be improved by amino acid PET. The aim of this experimental study was to investigate uptake of 2-18F-fluoroethyl-l-tyrosine (18F-FET) and l-[methyl-3H]-methionine (3H-MET) in residual tumor after surgery and possible false-positive uptake in treatment-related changes. Methods: F98 or GS-9L rat gliomas were implanted into the brain of 64 rats. Tumors were resected after 1 wk of tumor growth, and sham surgery was performed in an additional 10 animals. At different time points after surgery (1, 2, 3, 7, and 14-16 d), rats underwent ex vivo dual-tracer autoradiography using 18F-FET and 3H-MET. Histologic slices were evaluated by immunostaining for cell density and astrogliosis. Tracer uptake was quantified by lesion-to-brain ratios (L/B) at the rim of the resection cavity (considered treatment-related uptake) and in residual or recurrent tumor tissue. Four animals showing no residual tumor underwent PET 3 d after surgery to examine time-activity curves of 18F-FET uptake in treatment-related changes. Results: Treatment-related uptake with a mean L/B of 2.0 ± 0.3 for 18F-FET and a mean L/B of 1.7 ± 0.2 for 3H-MET was noted at the rim of the resection cavity in the first week after surgery, decreasing significantly by 14-16 d (P < 0.01). Treatment-related tracer uptake was significantly higher for 18F-FET than for 3H-MET (P < 0.001). Tracer uptake in rat gliomas exceeded treatment-related tracer uptake at all time points (P < 0.001), but the latter was in the range of human gliomas. Reactive astrogliosis was noted near the resection cavity from the second day after surgery. Time-activity curves of 18F-FET uptake in those areas revealed constantly increasing uptake. Conclusion: Surgery may induce significant treatment-related 18F-FET and 3H-MET uptake near the resection cavity in the first week after surgery, presumably caused by reactive astrogliosis. Treatment-related tracer uptake was less pronounced for 3H-MET, indicating that 11C-MET may be better suited for assessing the postoperative situation than 18F-FET. Assessment of residual tumor after surgery by amino acid PET seems to be more reliable after an interval of 14 d.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Glioma/diagnostic imaging , Glioma/surgery , Methionine/analogs & derivatives , Tyrosine/analogs & derivatives , Animals , Astrocytes , Autoradiography , False Positive Reactions , Gliosis/diagnostic imaging , Magnetic Resonance Imaging , Male , Methionine/pharmacokinetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Transplantation , Neoplasm, Residual/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Inbred F344 , Treatment Outcome , Tyrosine/pharmacokinetics
10.
BMC Med Imaging ; 18(1): 41, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30400875

ABSTRACT

BACKGROUND: Attenuation correction is one of the most crucial correction factors for accurate PET data quantitation in hybrid PET/MR scanners, and computing accurate attenuation coefficient maps from MR brain acquisitions is challenging. Here, we develop a method for accurate bone and air segmentation using MR ultrashort echo time (UTE) images. METHODS: MR UTE images from simultaneous MR and PET imaging of five healthy volunteers was used to generate a whole head, bone and air template image for inclusion into an improved MR derived attenuation correction map, and applied to PET image data for quantitative analysis. Bone, air and soft tissue were segmented based on Gaussian Mixture Models with probabilistic tissue maps as a priori information. We present results for two approaches for bone attenuation coefficient assignments: one using a constant attenuation correction value; and another using an estimated continuous attenuation value based on a calibration fit. Quantitative comparisons were performed to evaluate the accuracy of the reconstructed PET images, with respect to a reference image reconstructed with manually segmented attenuation maps. RESULTS: The DICE coefficient analysis for the air and bone regions in the images demonstrated improvements compared to the UTE approach, and other state-of-the-art techniques. The most accurate whole brain and regional brain analyses were obtained using constant bone attenuation coefficient values. CONCLUSIONS: A novel attenuation correction method for PET data reconstruction is proposed. Analyses show improvements in the quantitative accuracy of the reconstructed PET images compared to other state-of-the-art AC methods for simultaneous PET/MR scanners. Further evaluation is needed with radiopharmaceuticals other than FDG, and in larger cohorts of participants.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Radiographic Image Interpretation, Computer-Assisted/standards , Adult , Algorithms , Fluorodeoxyglucose F18/administration & dosage , Healthy Volunteers , Humans , Radiographic Image Interpretation, Computer-Assisted/methods , Radiopharmaceuticals/administration & dosage , Young Adult
11.
Hum Brain Mapp ; 39(12): 5126-5144, 2018 12.
Article in English | MEDLINE | ID: mdl-30076750

ABSTRACT

Simultaneous Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning is a recent major development in biomedical imaging. The full integration of the PET detector ring and electronics within the MR system has been a technologically challenging design to develop but provides capacity for simultaneous imaging and the potential for new diagnostic and research capability. This article reviews state-of-the-art MR-PET hardware and software, and discusses future developments focusing on neuroimaging methodologies for MR-PET scanning. We particularly focus on the methodologies that lead to an improved synergy between MRI and PET, including optimal data acquisition, PET attenuation and motion correction, and joint image reconstruction and processing methods based on the underlying complementary and mutual information. We further review the current and potential future applications of simultaneous MR-PET in both systems neuroscience and clinical neuroimaging research. We demonstrate a simultaneous data acquisition protocol to highlight new applications of MR-PET neuroimaging research studies.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Neuroimaging/methods , Neurosciences/methods , Positron-Emission Tomography/methods , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Multimodal Imaging/standards , Neuroimaging/standards , Neurosciences/standards , Positron-Emission Tomography/standards
12.
Neuropeptides ; 67: 27-35, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29273382

ABSTRACT

Currently, there are no causative or disease modifying treatments available for Alzheimer's disease (AD). Previously, it has been shown that D3, a small, fully d-enantiomeric peptide is able to eliminate low molecular weight Aß oligomers in vitro, enhance cognition and reduce plaque load in AD transgenic mice. To further characterise the therapeutic potential of D3 towards N-terminally truncated and pyroglutamated Aß (pEAß(3-42)) we tested D3 and its head-to-tail tandem derivative D3D3 both in vitro and in vivo in the new mouse model TBA2.1. These mice produce human pEAß(3-42) leading to a strong, early onset motor neurodegenerative phenotype. In the present study, we were able to demonstrate 1) strong binding affinity of both D3 and D3D3 to pEAß(3-42) in comparison to Aß(1-42) and 2) increased affinity of the tandem derivative D3D3 in comparison to D3. Subsequently we tested the therapeutic potentials of both peptides in the TBA2.1 animal model. Truly therapeutic, non-preventive treatment with D3 and D3D3 clearly slowed the progression of the neurodegenerative TBA2.1 phenotype, indicating the strong therapeutic potential of both peptides against pEAß(3-42) induced neurodegeneration.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cognition/physiology , Peptide Fragments/metabolism , Plaque, Amyloid/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Animals , Disease Models, Animal , Mice, Transgenic , Peptide Fragments/genetics , Phenotype , Plaque, Amyloid/genetics
13.
Clin Transl Imaging ; 5(3): 209-223, 2017.
Article in English | MEDLINE | ID: mdl-28680873

ABSTRACT

PURPOSE: Despite the excellent capacity of the conventional MRI to image brain tumours, problems remain in answering a number of critical diagnostic questions. To overcome these diagnostic shortcomings, PET using radiolabeled amino acids and perfusion-weighted imaging (PWI) are currently under clinical evaluation. The role of amino acid PET and PWI in different diagnostic challenges in brain tumours is controversial. METHODS: Based on the literature and experience of our centres in correlative imaging with PWI and PET using O-(2-[18F]fluoroethyl)-l-tyrosine or 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine, the current role and shortcomings of amino acid PET and PWI in different diagnostic challenges in brain tumours are reviewed. Literature searches were performed on PubMed, and additional literature was retrieved from the reference lists of identified articles. In particular, all studies in which amino acid PET was directly compared with PWI were included. RESULTS: PWI is more readily available, but requires substantial expertise and is more sensitive to artifacts than amino acid PET. At initial diagnosis, PWI and amino acid PET can help to define a site for biopsy but amino acid PET appears to be more powerful to define the tumor extent. Both methods are helpful to differentiate progression or recurrence from unspecific posttherapeutic changes. Assessment of therapeutic efficacy can be achieved especially with amino acid PET, while the data with PWI are sparse. CONCLUSION: Both PWI and amino acid PET add valuable diagnostic information to the conventional MRI in the assessment of patients with brain tumours, but further studies are necessary to explore the complementary nature of these two methods.

14.
Nat Rev Neurol ; 13(5): 279-289, 2017 May.
Article in English | MEDLINE | ID: mdl-28387340

ABSTRACT

Despite the fact that MRI has evolved to become the standard method for diagnosis and monitoring of patients with brain tumours, conventional MRI sequences have two key limitations: the inability to show the full extent of the tumour and the inability to differentiate neoplastic tissue from nonspecific, treatment-related changes after surgery, radiotherapy, chemotherapy or immunotherapy. In the past decade, PET involving the use of radiolabelled amino acids has developed into an important diagnostic tool to overcome some of the shortcomings of conventional MRI. The Response Assessment in Neuro-Oncology working group - an international effort to develop new standardized response criteria for clinical trials in brain tumours - has recommended the additional use of amino acid PET imaging for brain tumour management. Concurrently, a number of advanced MRI techniques such as magnetic resonance spectroscopic imaging and perfusion weighted imaging are under clinical evaluation to target the same diagnostic problems. This Review summarizes the clinical role of amino acid PET in relation to advanced MRI techniques for differential diagnosis of brain tumours; delineation of tumour extent for treatment planning and biopsy guidance; post-treatment differentiation between tumour progression or recurrence versus treatment-related changes; and monitoring response to therapy. An outlook for future developments in PET and MRI techniques is also presented.


Subject(s)
Brain Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Medical Oncology/trends , Neuroimaging/trends , Positron-Emission Tomography/methods , Humans , Magnetic Resonance Imaging/trends , Positron-Emission Tomography/trends
15.
Brain Behav ; 6(1): e00421, 2016 01.
Article in English | MEDLINE | ID: mdl-27110442

ABSTRACT

BACKGROUND: Cortical acetylcholine released from cells in the basal forebrain facilitates cue detection and improves attentional performance. Cholinergic fibres to the cortex originate from the CH4 cell group, sometimes referred to as the Nucleus basalis of Meynert and the Nucleus subputaminalis of Ayala. The aim of this work was to investigate the effects of volumes of cholinergic nuclei on attention and executive function. METHODS: The volumes of CH4 and CH4p subregions were measured in a subgroup of 38 subjects (33.5 ± 11 years, 20 females) from a population-based cohort study of smokers and never-smokers who have undergone additional MR imaging. To define regions of interest, we applied a DARTEL-based procedure implemented in SPM8 and a validated probabilistic map of the basal forebrain. Attention and executive function were measured with Trail-Making Test (TMT A+B) and Stroop-Task. RESULTS: We found a quadratic effect of the left CH4 subregion on performance of the TMT. Extremely small as well as extremely large volumes are associated with poor test performance. CONCLUSIONS: Our results indicate that a small CH4 volume predisposes for a hypocholinergic state, whereas an extremely large volume predisposes for a hypercholinergic state. Both extremes have detrimental effects on attention. Comparable nonlinear effects have already been reported in pharmacological studies on the effects cholinergic agonists on attention.


Subject(s)
Basal Nucleus of Meynert/anatomy & histology , Basal Nucleus of Meynert/physiology , Functional Laterality/physiology , Trail Making Test/statistics & numerical data , Adult , Animals , Cohort Studies , Female , Humans , Male , Organ Size
16.
PLoS One ; 10(3): e0122188, 2015.
Article in English | MEDLINE | ID: mdl-25826269

ABSTRACT

Little information is available on the impact of hemodialysis on cerebral water homeostasis and its distribution in chronic kidney disease. We used a neuropsychological test battery, structural magnetic resonance imaging (MRI) and a novel technique for quantitative measurement of localized water content using 3T MRI to investigate ten hemodialysis patients (HD) on a dialysis-free day and after hemodialysis (2.4±2.2 hours), and a matched healthy control group with the same time interval. Neuropsychological testing revealed mainly attentional and executive cognitive dysfunction in HD. Voxel-based-morphometry showed only marginal alterations in the right inferior medial temporal lobe white matter in HD compared to controls. Marked increases in global brain water content were found in the white matter, specifically in parietal areas, in HD patients compared to controls. Although the global water content in the gray matter did not differ between the two groups, regional increases of brain water content in particular in parieto-temporal gray matter areas were observed in HD patients. No relevant brain hydration changes were revealed before and after hemodialysis. Whereas longer duration of dialysis vintage was associated with increased water content in parieto-temporal-occipital regions, lower intradialytic weight changes were negatively correlated with brain water content in these areas in HD patients. Worse cognitive performance on an attention task correlated with increased hydration in frontal white matter. In conclusion, long-term HD is associated with altered brain tissue water homeostasis mainly in parietal white matter regions, whereas the attentional domain in the cognitive dysfunction profile in HD could be linked to increased frontal white matter water content.


Subject(s)
Body Water , Brain/metabolism , Renal Dialysis , Case-Control Studies , Humans , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/therapy , Magnetic Resonance Imaging
17.
Eur Radiol ; 25(10): 3017-24, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25813014

ABSTRACT

OBJECTIVE: We aimed to evaluate the diagnostic potential of dual-time-point imaging with positron emission tomography (PET) using O-(2-[(18)F]fluoroethyl)-L-tyrosine ((18)F-FET) for non-invasive grading of cerebral gliomas compared with a dynamic approach. METHODS: Thirty-six patients with histologically confirmed cerebral gliomas (21 primary, 15 recurrent; 24 high-grade, 12 low-grade) underwent dynamic PET from 0 to 50 min post-injection (p.i.) of (18)F-FET, and additionally from 70 to 90 min p.i. Mean tumour-to-brain ratios (TBRmean) of (18)F-FET uptake were determined in early (20-40 min p.i.) and late (70-90 min p.i.) examinations. Time-activity curves (TAC) of the tumours from 0 to 50 min after injection were assigned to different patterns. The diagnostic accuracy of changes of (18)F-FET uptake between early and late examinations for tumour grading was compared to that of curve pattern analysis from 0 to 50 min p.i. of (18)F-FET. RESULTS: The diagnostic accuracy of changes of the TBRmean of (18)F-FET PET uptake between early and late examinations for the identification of HGG was 81% (sensitivity 83%; specificity 75%; cutoff - 8%; p < 0.001), and 83% for curve pattern analysis (sensitivity 88%; specificity 75%; p < 0.001). CONCLUSION: Dual-time-point imaging of (18)F-FET uptake in gliomas achieves diagnostic accuracy for tumour grading that is similar to the more time-consuming dynamic data acquisition protocol. KEY POINTS: • Dual-time-point imaging is equivalent to dynamic FET PET for grading of gliomas. • Dual-time-point imaging is less time consuming than dynamic FET PET. • Costs can be reduced due to higher patient throughput. • Reduced imaging time increases patient comfort and sedation might be avoided. • Quicker image interpretation is possible, as no curve evaluation is necessary.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Positron-Emission Tomography/methods , Radiopharmaceuticals , Tyrosine/analogs & derivatives , Adult , Aged , Female , Humans , Male , Middle Aged , Neoplasm Grading , Physical Examination , Sensitivity and Specificity
18.
Brain Behav ; 4(2): 215-26, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24683514

ABSTRACT

BACKGROUND: Changes in fiber tract architecture have gained attention as a potentially important aspect of schizophrenia neuropathology. Although the exact pathogenesis of these abnormalities yet remains to be elucidated, a genetic component is highly likely. Neuregulin-1 (NRG1) is one of the best-validated schizophrenia susceptibility genes. We here report the impact of the Neuregulin-1 rs35753505 variant on white matter structure in healthy young individuals with no family history of psychosis. METHODS: We compared fractional anisotropy in 54 subjects that were either homozygous for the risk C allele carriers (n = 31) for rs35753505 or homozygous for the T allele (n = 23) using diffusion tensor imaging with 3T. Tract-Based Spatial Statistics (TBSS), a method especially developed for diffusion data analysis, was used to improve white matter registration and to focus the statistical analysis to major fiber tracts. RESULTS: Statistical analysis showed that homozygous risk C allele carriers featured elevated fractional anisotropy (FA) in the right perihippocampal region and the white matter proximate to the left area 4p as well as the right hemisphere of the cerebellum. We found three clusters of reduced FA values in homozygous C allele carriers: in the left superior parietal region, the right prefrontal white matter and in the deep white matter of the left frontal lobe. CONCLUSION: Our results highlight the importance of Neuregulin-1 for structural connectivity of the right medial temporal lobe. This finding is in line with well known neuropathological findings in this region in patients with schizophrenia.


Subject(s)
Cerebellum/pathology , Hippocampus/pathology , Neuregulin-1/genetics , Schizophrenia/genetics , Schizophrenia/pathology , White Matter/pathology , Adult , Female , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Male , Young Adult
19.
MAGMA ; 27(1): 81-93, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24337392

ABSTRACT

This article provides a comprehensive overview of oxygen ((17)O) magnetic resonance spectroscopy and imaging, including the advantages and challenges offered by the different methods developed thus far. The physiological role and relevance of oxygen, and its participation in aerobic metabolism, are addressed to emphasize the importance of the investigations and the efforts related to these developments. Furthermore, a number of methods employed in the determination of the cerebral metabolic rate of oxygen in neural cells will be presented, focusing primarily on methodologies enabling absolute quantification.


Subject(s)
Brain/metabolism , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Oxygen/metabolism , Diagnostic Imaging , Humans , Magnetic Fields , Models, Theoretical , Neurons/metabolism , Oxygen Isotopes/metabolism , Protons , Reproducibility of Results
20.
J Magn Reson ; 227: 1-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23220231

ABSTRACT

Residual dipolar couplings and averaged correlation time maps in soft matter were obtained by mixed echo phase-encoding solid imaging (MIPSI). Use of the mixed echo in soft matter NMR imaging experiments has two crucial advantages: the signal intensity is recovered with a weak incoherence losses, and second, the intervals during which the phase-encoding evolution due to the magnetic field gradients takes place can be chosen to be much larger than with all other spin echo experiments and hence, a higher special resolution can be achieved. The parameter maps are compared to those obtained by the Hahn-echo phase-frequency encoding method. For both MRI methods the density operator formalism is applied in the average Hamiltonian approximation to describe the encoding of the spin echoes by the molecular motions. The results of preliminary experiments are presented.


Subject(s)
Algorithms , Elastomers/chemistry , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Computer Simulation , Molecular Dynamics Simulation , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...