Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(49)2020 Dec.
Article in English | MEDLINE | ID: mdl-33277251

ABSTRACT

Nonreciprocity, the defining characteristic of isolators, circulators, and a wealth of other applications in radio/microwave communications technologies, is generally difficult to achieve as most physical systems incorporate symmetries that prevent the effect. In particular, acoustic waves are an important medium for information transport, but they are inherently symmetric in time. In this work, we report giant nonreciprocity in the transmission of surface acoustic waves (SAWs) on lithium niobate substrate coated with ferromagnet/insulator/ferromagnet (FeGaB/Al2O3/FeGaB) multilayer structure. We exploit this structure with a unique asymmetric band diagram and expand on magnetoelastic coupling theory to show how the magnetic bands couple with acoustic waves only in a single direction. We measure 48.4-dB (power ratio of 1:69,200) isolation that outperforms current state-of-the-art microwave isolator devices in a previously unidentified acoustic wave system that facilitates unprecedented size, weight, and power reduction. In addition, these results offer a promising platform to study nonreciprocal SAW devices.

2.
Nanoscale ; 11(35): 16187-16199, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31461093

ABSTRACT

Additive manufacturing at the macroscale has become a hot topic of research in recent years. It has been used by engineers for rapid prototyping and low-volume production. The development of such technologies at the nanoscale, or additive nanomanufacturing, will provide a future path for new nanotechnology applications. In this review article, we introduce several available toolboxes that can be potentially used for additive nanomanufacturing. We especially focus on laser-based additive nanomanufacturing under ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...