Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cureus ; 15(9): e45093, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37842437

ABSTRACT

Peptic ulcer disease (PUD) is a well-known and commonly encountered gastrointestinal (GI) pathology. Helicobacter pylori and nonsteroidal anti-inflammatory drug (NSAID) use are the cause of the majority of PUD cases, although other rare etiologies may be encountered. PUD is confirmed by endoscopic visualization of gastric ulcers, with radiographic imaging being less impactful in diagnosis. In this paper, we present a middle-aged patient who presented with PUD caused by thrombotic occlusion of the left gastric artery (LGA), with her diagnosis being made with computed tomography (CT) imaging prior to endoscopy. This case emphasizes the importance of radiographic imaging in the undifferentiated patient, as well as the unique role radiologists play in both discovering diagnoses and their etiologies.

2.
Nat Commun ; 14(1): 5802, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726277

ABSTRACT

Cryo electron microscopy (cryo-EM) is used by biological research to visualize biomolecular complexes in 3D, but the heterogeneity of cryo-EM reconstructions is not easily estimated. Current processing paradigms nevertheless exert great effort to reduce flexibility and heterogeneity to improve the quality of the reconstruction. Clustering algorithms are typically employed to identify populations of data with reduced variability, but lack assessment of remaining heterogeneity. Here we develope a fast and simple algorithm based on spatial filtering to estimate the heterogeneity of a reconstruction. In the absence of flexibility, this estimate approximates macromolecular component occupancy. We show that our implementation can derive reasonable input parameters, that composition heterogeneity can be estimated based on contrast loss, and that the reconstruction can be modified accordingly to emulate altered constituent occupancy. This stands to benefit conventionally employed maximum-likelihood classification methods, whereas we here limit considerations to cryo-EM map interpretation, quantification, and particle-image signal subtraction.


Subject(s)
Algorithms , Cryoelectron Microscopy , Cluster Analysis
3.
ACG Case Rep J ; 10(8): e01114, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37601303

ABSTRACT

Budd-Chiari syndrome (BCS) is a rare condition characterized by the obstruction of hepatic venous outflow. It is estimated to affect 1 in 100,000 people worldwide. In cases of new BCS, inherited and acquired hypercoagulability states must be evaluated. Coronavirus disease 2019 (COVID-19) can induce a hypercoagulable state because of its extensive inflammatory response, and while it has been reported to cause portal vein thrombosis, it rarely causes BCS. This article presents a case of a 22-year-old man who developed fulminant symptoms and was subsequently diagnosed with BCS and portal vein thrombosis secondary to COVID-19 infection, after ruling out other inherited and acquired causes of BCS. In addition, a literature review is provided to understand the presentation and management of such patients. Although most patients improve with medical management, this article emphasizes the consideration of liver transplant for patients who do not improve.

4.
Cureus ; 15(6): e40747, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37485136

ABSTRACT

Acute cholangitis is a well-known biliary tree pathology most often encountered in patients with gallstone disease. When left untreated, acute cholangitis can lead to severe complications, including death. Therefore, identifying and properly treating acute cholangitis is crucial to avoiding such complications. This paper describes an 84-year-old female patient with acute cholangitis who presented with atypical symptoms of chest pain and cough. The patient was successfully treated with endoscopic retrograde cholangiopancreatography (ERCP), antibiotics, and ursodeoxycholic acid. We focus on this patient's unique presentation to highlight the low incidence of Charcot's triad and Reynold's pentad in elderly patients and to emphasize the importance of formulating a broad differential in patients with non-specific symptoms.

5.
Cell Host Microbe ; 31(4): 604-615.e4, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36996819

ABSTRACT

Rotavirus assembly is a complex process that involves the stepwise acquisition of protein layers in distinct intracellular locations to form the fully assembled particle. Understanding and visualization of the assembly process has been hampered by the inaccessibility of unstable intermediates. We characterize the assembly pathway of group A rotaviruses observed in situ within cryo-preserved infected cells through the use of cryoelectron tomography of cellular lamellae. Our findings demonstrate that the viral polymerase VP1 recruits viral genomes during particle assembly, as revealed by infecting with a conditionally lethal mutant. Additionally, pharmacological inhibition to arrest the transiently enveloped stage uncovered a unique conformation of the VP4 spike. Subtomogram averaging provided atomic models of four intermediate states, including a pre-packaging single-layered intermediate, the double-layered particle, the transiently enveloped double-layered particle, and the fully assembled triple-layered virus particle. In summary, these complementary approaches enable us to elucidate the discrete steps involved in forming an intracellular rotavirus particle.


Subject(s)
Rotavirus , Rotavirus/physiology , Tomography , Virus Assembly
6.
Methods Mol Biol ; 2503: 179-186, 2022.
Article in English | MEDLINE | ID: mdl-35575895

ABSTRACT

African swine fever virus is a cytolytic virus that leads to the apoptosis of both cultured cells and primary macrophages. Cell culture supernatants of virus-infected cells are routinely used for virological and immunological studies, despite differences in the biological behavior between such preparations and highly purified virus. In addition, more recent data suggests that exosomes containing viral proteins may be secreted from infected cells. While African swine fever virus can be purified through a number of methods, in our hands Percoll provides the most robust method of separating virus from cellular contaminants.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , Cell Line , Cells, Cultured , DNA Viruses , Swine , Viral Proteins
9.
PLoS Pathog ; 16(9): e1008920, 2020 09.
Article in English | MEDLINE | ID: mdl-32997730

ABSTRACT

The virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and by the opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane-interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the "late" 135S particles have detectable levels of the VP1 N-terminus been trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.


Subject(s)
Capsid/ultrastructure , Poliomyelitis/metabolism , RNA, Viral/ultrastructure , Virion/ultrastructure , Capsid/metabolism , Capsid Proteins/metabolism , Cryoelectron Microscopy , Humans , Models, Molecular , RNA, Viral/metabolism , Receptors, Virus/metabolism , Virion/metabolism , Virus Internalization
11.
Nat Struct Mol Biol ; 27(10): 950-958, 2020 10.
Article in English | MEDLINE | ID: mdl-32737466

ABSTRACT

The COVID-19 pandemic has had an unprecedented health and economic impact and there are currently no approved therapies. We have isolated an antibody, EY6A, from an individual convalescing from COVID-19 and have shown that it neutralizes SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds the receptor binding domain (RBD) of the viral spike glycoprotein tightly (KD of 2 nM), and a 2.6-Å-resolution crystal structure of an RBD-EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues within this footprint are key to stabilizing the pre-fusion spike. Cryo-EM analyses of the pre-fusion spike incubated with EY6A Fab reveal a complex of the intact spike trimer with three Fabs bound and two further multimeric forms comprising the destabilized spike attached to Fab. EY6A binds what is probably a major neutralizing epitope, making it a candidate therapeutic for COVID-19.


Subject(s)
Antibodies, Viral/chemistry , Betacoronavirus/chemistry , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Adult , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Chlorocebus aethiops , Cross Reactions , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Male , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Conformation , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
12.
Nat Struct Mol Biol ; 27(9): 846-854, 2020 09.
Article in English | MEDLINE | ID: mdl-32661423

ABSTRACT

The SARS-CoV-2 virus is more transmissible than previous coronaviruses and causes a more serious illness than influenza. The SARS-CoV-2 receptor binding domain (RBD) of the spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor as a prelude to viral entry into the cell. Using a naive llama single-domain antibody library and PCR-based maturation, we have produced two closely related nanobodies, H11-D4 and H11-H4, that bind RBD (KD of 39 and 12 nM, respectively) and block its interaction with ACE2. Single-particle cryo-EM revealed that both nanobodies bind to all three RBDs in the spike trimer. Crystal structures of each nanobody-RBD complex revealed how both nanobodies recognize the same epitope, which partly overlaps with the ACE2 binding surface, explaining the blocking of the RBD-ACE2 interaction. Nanobody-Fc fusions showed neutralizing activity against SARS-CoV-2 (4-6 nM for H11-H4, 18 nM for H11-D4) and additive neutralization with the SARS-CoV-1/2 antibody CR3022.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral , Receptors, Virus/metabolism , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/metabolism , Antibodies, Viral/ultrastructure , Antibody Affinity , Antigen-Antibody Reactions/immunology , Betacoronavirus/metabolism , Binding, Competitive , COVID-19 , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes/immunology , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Models, Molecular , Peptide Library , Peptidyl-Dipeptidase A/ultrastructure , Protein Binding , Protein Conformation , Receptors, Virus/ultrastructure , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2 , Sequence Homology, Amino Acid , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/ultrastructure , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure
13.
Cell Host Microbe ; 28(3): 445-454.e6, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32585135

ABSTRACT

There are as yet no licensed therapeutics for the COVID-19 pandemic. The causal coronavirus (SARS-CoV-2) binds host cells via a trimeric spike whose receptor binding domain (RBD) recognizes angiotensin-converting enzyme 2, initiating conformational changes that drive membrane fusion. We find that the monoclonal antibody CR3022 binds the RBD tightly, neutralizing SARS-CoV-2, and report the crystal structure at 2.4 Å of the Fab/RBD complex. Some crystals are suitable for screening for entry-blocking inhibitors. The highly conserved, structure-stabilizing CR3022 epitope is inaccessible in the prefusion spike, suggesting that CR3022 binding facilitates conversion to the fusion-incompetent post-fusion state. Cryogenic electron microscopy (cryo-EM) analysis confirms that incubation of spike with CR3022 Fab leads to destruction of the prefusion trimer. Presentation of this cryptic epitope in an RBD-based vaccine might advantageously focus immune responses. Binders at this epitope could be useful therapeutically, possibly in synergy with an antibody that blocks receptor attachment.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/chemistry , Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Allosteric Site , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Antigen-Antibody Complex/chemistry , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Host Microbial Interactions/immunology , Humans , Models, Molecular , Neutralization Tests , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, Virus/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Viral Vaccines/immunology , Viral Vaccines/therapeutic use , Virus Internalization , COVID-19 Drug Treatment
14.
ACS Infect Dis ; 4(11): 1585-1600, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30200751

ABSTRACT

Clathrin-mediated endocytosis (CME) is an important entry pathway for viruses. Here, we applied click chemistry to covalently immobilize reovirus on surfaces to study CME during early host-pathogen interactions. To uncouple chemical and physical properties of viruses and determine their impact on CME initiation, we used the same strategy to covalently immobilize nanoparticles of different sizes. Using fluorescence live microscopy and electron microscopy, we confirmed that clathrin recruitment depends on particle size and discovered that the maturation into clathrin-coated vesicles (CCVs) is independent from cargo internalization. Surprisingly, we found that the final size of CCVs appears to be imprinted on the clathrin coat at early stages of cargo-cell interactions. Our approach has allowed us to unravel novel aspects of early interactions between viruses and the clathrin machinery that influence late stages of CME and CCVs formation. This method can be easily and broadly applied to the field of nanotechnology, endocytosis, and virology.


Subject(s)
Clathrin-Coated Vesicles/physiology , Click Chemistry/methods , Endocytosis , Nanoparticles/metabolism , Reoviridae/physiology , Virus Internalization , Cell Line , Clathrin-Coated Vesicles/ultrastructure , Glass , Host Microbial Interactions , Microscopy, Electron , Microscopy, Fluorescence , Surface Properties , Virus Physiological Phenomena
15.
Cell Microbiol ; 19(12)2017 12.
Article in English | MEDLINE | ID: mdl-28672089

ABSTRACT

Reovirus replication occurs in the cytoplasm of the host cell, in virally induced mini-organelles called virus factories. On the basis of the serotype of the virus, the virus factories can manifest as filamentous (type 1 Lang strain) or globular structures (type 3 Dearing strain). The filamentous factories morphology is dependent on the microtubule cytoskeleton; however, the exact function of the microtubule network in virus replication remains unknown. Using a combination of fluorescent microscopy, electron microscopy, and tomography of high-pressure frozen and freeze-substituted cells, we determined the ultrastructural organisation of reovirus factories. Cells infected with the reovirus microtubule-dependent strain display paracrystalline arrays of progeny virions resulting from their tiered organisation around microtubule filaments. On the contrary, in cells infected with the microtubule-independent strain, progeny virions lacked organisation. Conversely to the microtubule-dependent strain, around half of the viral particles present in these viral factories did not contain genomes (genome-less particles). Complementarily, interference with the microtubule filaments in cells infected with the microtubule-dependent strain resulted in a significant increase of genome-less particle number. This decrease of genome packaging efficiency could be rescued by rerouting viral factories on the actin cytoskeleton. These findings demonstrate that the scaffolding properties of the microtubule, and not biochemical nature of tubulin, are critical determinants for reovirus efficient genome packaging. This work establishes, for the first time, a functional correlation between ultrastructural organisation of reovirus factories with genome packaging efficiency and provides novel information on how viruses coordinate assembly of progeny particles.


Subject(s)
Host-Pathogen Interactions , Microtubules/metabolism , RNA, Viral/metabolism , Reoviridae/physiology , Virus Assembly , Microscopy, Electron , Microscopy, Fluorescence , Microtubules/ultrastructure , RNA, Viral/ultrastructure , Reoviridae/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...