Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
2.
Spine (Phila Pa 1976) ; 47(1): 82-89, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34115714

ABSTRACT

STUDY DESIGN: Prospective, randomized, controlled preclinical study. OBJECTIVE: The objective of this study was to compare the host inflammatory response of our previously described hyperelastic, 3D-printed (3DP) hydroxyapatite (HA)-demineralized bone matrix (DBM) composite scaffold to the response elicited with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in a preclinical rat posterolateral lumbar fusion model. SUMMARY OF BACKGROUND DATA: Our group previously found that this 3D-printed HA-DBM composite material shows promise as a bone graft substitute in a preclinical rodent model, but its safety profile had yet to be assessed. METHODS: Sixty female Sprague-Dawley rats underwent bilateral posterolateral intertransverse lumbar spinal fusion using with the following implants: 1) type I absorbable collagen sponge (ACS) alone; 2) 10 µg rhBMP-2/ACS; or 3) the 3DP HA-DBM composite scaffold (n = 20). The host inflammatory response was assessed using magnetic resonance imaging, while the local and circulating cytokine expression levels were evaluated by enzyme-linked immunosorbent assays at subsequent postoperative time points (N = 5/time point). RESULTS: At both 2 and 5 days postoperatively, treatment with the HA-DBM scaffold produced significantly less soft tissue edema at the fusion bed site relative to rhBMP-2-treated animals as quantified on magnetic resonance imaging. At every postoperative time point evaluated, the level of soft tissue edema in HA-DBM-treated animals was comparable to that of the ACS control group. At 2 days postoperatively, serum concentrations of tumor necrosis factor-α and macrophage chemoattractant protein-1 were significantly elevated in the rhBMP-2 treatment group relative to ACS controls, whereas these cytokines were not elevated in the HA-DBM-treated animals. CONCLUSION: The 3D-printed HA-DBM composite induces a significantly reduced host inflammatory response in a preclinical spinal fusion model relative to rhBMP-2.Level of Evidence: N/A.


Subject(s)
Spinal Fusion , Animals , Bone Matrix , Bone Morphogenetic Protein 2 , Bone Transplantation , Durapatite , Female , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Printing, Three-Dimensional , Prospective Studies , Rats , Rats, Sprague-Dawley , Recombinant Proteins , Transforming Growth Factor beta
3.
Acta Biomater ; 127: 146-158, 2021 06.
Article in English | MEDLINE | ID: mdl-33831576

ABSTRACT

We recently developed a recombinant growth factor-free bone regenerative scaffold composed of stoichiometric hydroxyapatite (HA) ceramic particles and human demineralized bone matrix (DBM) particles (HA-DBM). Here, we performed the first pre-clinical comparative evaluation of HA-DBM relative to the industry standard and established positive control, recombinant human bone morphogenetic protein-2 (rhBMP-2), using a rat posterolateral spinal fusion model (PLF). Female Sprague-Dawley rats underwent bilateral L4-L5 PLF with implantation of the HA-DBM scaffold or rhBMP-2. Fusion was evaluated using radiography and blinded manual palpation, while biomechanical testing quantified the segmental flexion-extension range-of-motion (ROM) and stiffness of the fused segments at 8-weeks postoperatively. For mechanistic studies, pro-osteogenic gene and protein expression at 2-days and 1-, 2-, and 8-weeks postoperatively was assessed with another cohort. Unilateral fusion rates did not differ between the HA-DBM (93%) and rhBMP-2 (100%) groups; however, fusion scores were higher with rhBMP-2 (p = 0.008). Both treatments resulted in significantly reduced segmental ROM (p < 0.001) and greater stiffness (p = 0.009) when compared with non-operated controls; however, the degree of stabilization was significantly higher with rhBMP-2 treatment relative to the HA-DBM scaffold. In the mechanistic studies, PLGA and HA scaffolds were used as negative controls. Both rhBMP-2 and HA-DBM treatments resulted in significant elevations of several osteogenesis-associated genes, including Runx2, Osx, and Alp. The rhBMP-2 treatment led to significantly greater early, mid, and late osteogenic markers, which may be the mechanism in which early clinical complications are seen. The HA-DBM scaffold also induced osteogenic gene expression, but primarily at the 2-week postoperative timepoint. Overall, our findings show promise for this 3D-printed composite as a recombinant growth factor-free bone graft substitute for spinal fusion. STATEMENT OF SIGNIFICANCE: Despite current developments in bone graft technology, there remains a significant void in adequate materials for bone regeneration in clinical applications. Two of the most efficacious bone graft options are the gold-standard iliac crest bone graft and recombinant human-derived bone morphogenetic protein-2 (rhBMP-2), available commercially as Infuse™. Although efficacious, autologous graft is associated with donor-site morbidity, and Infuse™ has known side effects related to its substantial host inflammatory response, possibly associated with a immediate, robust osteoinductive response. Hence, there is a need for a bone graft substitute that provides adequate osteogenesis without associated adverse events. This study represents a significant step in the design of off-the-shelf growth factor-free devices for spine fusion.


Subject(s)
Spinal Fusion , Animals , Bone Matrix , Bone Morphogenetic Protein 2 , Bone Transplantation , Ceramics/pharmacology , Female , Lumbar Vertebrae , Printing, Three-Dimensional , Rats , Rats, Sprague-Dawley , Recombinant Proteins , Transforming Growth Factor beta
4.
Tissue Eng Part A ; 26(3-4): 157-166, 2020 02.
Article in English | MEDLINE | ID: mdl-31469055

ABSTRACT

Although numerous spinal biologics are commercially available, a cost-effective and safe bone graft substitute material for spine fusion has yet to be proven. In this study, "3D-Paints" containing varying volumetric ratios of hydroxyapatite (HA) and human demineralized bone matrix (DBM) in a poly(lactide-co-glycolide) elastomer were three-dimensional (3D) printed into scaffolds to promote osteointegration in rats, with an end goal of spine fusion without the need for recombinant growth factor. Spine fusion was evaluated by manual palpation, and osteointegration and de novo bone formation within scaffold struts were evaluated by laboratory and synchrotron microcomputed tomography and histology. The 3:1 HA:DBM composite achieved the highest mean fusion score and fusion rate (92%), which was significantly greater than the 3D printed DBM-only scaffold (42%). New bone was identified extending from the host transverse processes into the scaffold macropores, and osteointegration scores correlated with successful fusion. Strikingly, the combination of HA and DBM resulted in the growth of bone-like spicules within the DBM particles inside scaffold struts. These spicules were not observed in DBM-only scaffolds, suggesting that de novo spicule formation requires both HA and DBM. Collectively, our work suggests that this recombinant growth factor-free composite shows promise to overcome the limitations of currently used bone graft substitutes for spine fusion. Impact Statement Currently, there exists a no safe, yet highly effective, bone graft substitute that is well accepted for use in spine fusion procedures. With this work, we show that a three-dimensional printed scaffold containing osteoconductive hydroxyapatite and osteoinductive demineralized bone matrix that promotes new bone spicule formation, osteointegration, and successful fusion (stabilization) when implemented in a preclinical model of spine fusion. Our study suggests that this material shows promise as a recombinant growth factor-free bone graft substitute that could safely promote high rates of successful fusion and improve patient care.


Subject(s)
Bone Substitutes/chemistry , Printing, Three-Dimensional , Spinal Fusion/methods , Animals , Durapatite/chemistry , Humans , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
5.
Acta Biomater ; 99: 121-132, 2019 11.
Article in English | MEDLINE | ID: mdl-31539655

ABSTRACT

The field of 3D bioprinting has rapidly grown, yet the fundamental ability to manipulate material properties has been challenging with current bioink methods. Here, we change bioink properties using our PEG cross-linking (PEGX) bioink method with the objective of optimizing cell viability while retaining control of mechanical properties of the final bioprinted construct. First, we investigate cytocompatible, covalent cross-linking chemistries for bioink synthesis (e.g. Thiol Michael type addition and bioorthogonal inverse electron demand Diels-Alder reaction). We demonstrate these reactions are compatible with the bioink method, which results in high cell viability. The PEGX method is then exploited to optimize extruded cell viability by manipulating bioink gel robustness, characterized by mass flow rate. Below a critical point, cell viability linearly decreases with decreasing flow rates, but above this point, high viability is achieved. This work underscores the importance of building a foundational understanding of the relationships between extrudable bioink properties and cell health post-printing to more efficiently tune material properties for a variety of tissue and organ engineering applications. Finally, we also develop a post-printing, cell-friendly cross-linking strategy utilizing the same reactions used for synthesis. This secondary cross-linking leads to a range of mechanical properties relevant to soft tissue engineering as well as highly viable cell-laden gels stable for over one month in culture. STATEMENT OF SIGNIFICANCE: We demonstrate that a PEG crosslinking bioink method can be used with various cytocompatible, covalent cross-linking reactions: Thiol Michael type addition and tetrazine-norbornene click. The ability to vary bioink chemistry expands candidate polymers, and therefore can expedite development of new bioinks from unique polymers. We confirm post-printed cell viability and are the first to probe, in covalently cross-linked inks, how cell viability is impacted by different flow properties (mass flow rate). Finally, we also present PEG cross-linking as a new method of post-printing cross-linking that improves mechanical properties and stability while maintaining cell viability. By varying the cross-linking reaction, this method can be applicable to many types of polymers/inks for easy adoption by others investigating bioinks and hydrogels.


Subject(s)
Biocompatible Materials/chemistry , Bioprinting/instrumentation , Cross-Linking Reagents/chemistry , Polyethylene Glycols/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Bioprinting/methods , Cell Survival , Click Chemistry , Fibroblasts/cytology , Gelatin/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Hydrogels/chemistry , Norbornanes/chemistry , Printing, Three-Dimensional , Rheology , Stress, Mechanical
6.
ACS Omega ; 4(7): 12088-12097, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460322

ABSTRACT

Recent advances have demonstrated the ability to 3D-print, via extrusion, solvent-based liquid materials (previously named 3D-Paints) which solidify nearly instantaneously upon deposition and contain a majority by volume of solid particulate material. In prior work, the dissolved polymer binder which enables this process is a high molecular weight biocompatible elastomer, poly(lactic-co-glycolic) acid (PLGA). We demonstrate in this study an expansion of this solvent-based 3D-Paint system to two additional, less-expensive, and less-specialized polymers, polystyrene (PS) and polyethylene oxide (PEO). The polymer binder used within the 3D-Paint was shown to significantly affect the as-printed and thermal postprocessing behavior of printed structures. This development enables users to select one of several polymers to impart the most desirable properties for a given application. Additionally, 3D-Paints based on these new binders are not adversely affected by classes of particles that can chemically degrade PLGA, notably particles containing large quantities of alkali ions. This study demonstrates the ability to successfully use PS and PEO as binders in the 3D-Paint system and compares the rheological, mechanical, microstructural, and thermal properties of the modified 3D-Paints and resulting as-printed and thermally post-processed objects. These objects include, for the first time, structures resulting from 3D-Painting which mostly contain soda-lime glass and 45S5 bioactive glass.

7.
J Mech Behav Biomed Mater ; 98: 108-120, 2019 10.
Article in English | MEDLINE | ID: mdl-31226553

ABSTRACT

Soft biological tissues such as skeletal muscle and brain white matter can be inhomogeneous and anisotropic due to the presence of fibers. Unlike biological tissue, phantoms with known microstructure and defined mechanical properties enable a quantitative assessment and systematic investigation of the influence of inhomogeneities on the nature of shear wave propagation. This study introduces a mathematical measure for the wave shape, which the authors call as the 1-Norm, to determine the conditions under which homogenization may be a valid approach. This is achieved through experimentation using the Magnetic Resonance Elastography technique on 3D printed inhomogeneous fiber phantoms as well as on ex-vivo porcine lumbus muscle. In addition, Finite Element Analysis is used as a tool to decouple the effects of directional anisotropy from those of inhomogeneity. A correlation is then established between the values of 1-Norm derived from the wave front geometry, and the spacing (d) between neighboring inhomogeneities (spherical inclusions or fibers and fiber intersections in phantoms and muscle). Smaller values of 1-Norm indicate less wave scattering at the locations of fiber intersections, which implies that the wave propagation may be approximated to that of a homogeneous medium; homogenization may not be a valid approximation when significant scattering occurs at the locations of inhomogeneities. In conclusion, the current study proposes 1-Norm as a quantitative measure of the magnitude of wave scattering in a medium, which can potentially be used as a homogeneity index of a biological tissue.


Subject(s)
Elasticity Imaging Techniques/instrumentation , Finite Element Analysis , Magnetic Resonance Imaging/instrumentation , Muscle, Skeletal/diagnostic imaging , Phantoms, Imaging , Animals , Printing, Three-Dimensional , Swine
8.
Plast Reconstr Surg ; 143(5): 1397-1407, 2019 05.
Article in English | MEDLINE | ID: mdl-31033821

ABSTRACT

BACKGROUND: Autologous bone grafts remain the gold standard for craniofacial reconstruction despite limitations of donor-site availability and morbidity. A myriad of commercial bone substitutes and allografts are available, yet no product has gained widespread use because of inferior clinical outcomes. The ideal bone substitute is both osteoconductive and osteoinductive. Craniofacial reconstruction often involves irregular three-dimensional defects, which may benefit from malleable or customizable substrates. "Hyperelastic Bone" is a three-dimensionally printed synthetic scaffold, composed of 90% by weight hydroxyapatite and 10% by weight poly(lactic-co-glycolic acid), with inherent bioactivity and porosity to allow for tissue integration. This study examines the capacity of Hyperelastic Bone for bone regeneration in a critical-size calvarial defect. METHODS: Eight-millimeter calvarial defects in adult male Sprague-Dawley rats were treated with three-dimensionally printed Hyperelastic Bone, three-dimensionally printed Fluffy-poly(lactic-co-glycolic acid) without hydroxyapatite, autologous bone (positive control), or left untreated (negative control). Animals were euthanized at 8 or 12 weeks postoperatively and specimens were analyzed for new bone formation by cone beam computed tomography, micro-computed tomography, and histology. RESULTS: The mineralized bone volume-to-total tissue volume fractions for the Hyperelastic Bone cohort at 8 and 12 weeks were 74.2 percent and 64.5 percent of positive control bone volume/total tissue, respectively (p = 0.04). Fluffy-poly(lactic-co-glycolic acid) demonstrated little bone formation, similar to the negative control. Histologic analysis of Hyperelastic Bone scaffolds revealed fibrous tissue at 8 weeks, and new bone formation surrounding the scaffold struts by 12 weeks. CONCLUSION: Findings from our study suggest that Hyperelastic Bone grafts are effective for bone regeneration, with significant potential for clinical translation.


Subject(s)
Bone Regeneration , Orthopedic Procedures/methods , Plastic Surgery Procedures/methods , Skull/surgery , Tissue Scaffolds/chemistry , Animals , Cone-Beam Computed Tomography , Disease Models, Animal , Elasticity , Humans , Male , Osteogenesis , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Printing, Three-Dimensional , Rats , Rats, Sprague-Dawley , Skull/diagnostic imaging , Skull/injuries , Skull/physiology , Treatment Outcome , X-Ray Microtomography
9.
Biomaterials ; 201: 99-112, 2019 05.
Article in English | MEDLINE | ID: mdl-30807988

ABSTRACT

The basement membrane is a specialized extracellular matrix substrate responsible for support and maintenance of epithelial and endothelial structures. Engineered basement membrane-like hydrogel systems have the potential to advance understanding of cell-cell and cell-matrix interactions by allowing precise tuning of the substrate or matrix biochemical and biophysical properties. In this investigation, we developed tunable hydrogel substrates with conjugated bioactive peptides to modulate cell binding and growth factor signaling by endothelial cells. Hydrogels were formed by employing a poly(ethylene glycol) crosslinker to covalently crosslink gelatin polymers and simultaneously conjugate laminin-derived YIGSR peptides or vascular endothelial growth factor (VEGF)-mimetic QK peptides to the gelatin. Rheological characterization revealed rapid formation of hydrogels with similar stiffnesses across tested formulations, and swelling analysis demonstrated dependency on peptide and crosslinker concentrations in hydrogels. Levels of phosphorylated VEGF Receptor 2 in cells cultured on hydrogel substrates revealed that while human umbilical vein endothelial cells (HUVECs) responded to both soluble and conjugated forms of the QK peptide, conditionally-immortalized human glomerular endothelial cells (GEnCs) only responded to the conjugated presentation of the peptide. Furthermore, whereas HUVECs exhibited greatest upregulation in gene expression when cultured on YIGSR- and QK-conjugated hydrogel substrates after 5 days, GEnCs exhibited greatest upregulation when cultured on Matrigel control substrates at the same time point. These results indicate that conjugation of bioactive peptides to these hydrogel substrates significantly influenced endothelial cell behavior in cultures but with differential responses between HUVECs and GEnCs.


Subject(s)
Biocompatible Materials/chemistry , Endothelial Cells/drug effects , Gelatin/chemistry , Hydrogels/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Amines/metabolism , Basement Membrane , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Peptides/pharmacology , Polymers/pharmacology
10.
Acta Biomater ; 85: 84-93, 2019 02.
Article in English | MEDLINE | ID: mdl-30590182

ABSTRACT

Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context of engineering the intrahepatic biliary tree, an often-understudied topic in liver tissue engineering. Encapsulating biliary epithelial cells (cholangiocytes) within liver dECM has been shown to lead to the formation of complex biliary trees in vitro. By varying several aspects of the dECM structures' geometry, such as width and angle, we show that we can guide the directional formation of biliary trees. This is confirmed by computational 3D image analysis of duct alignment. This system also enables fabrication of a true multi-layer dECM structure and the formation of 3D biliary trees into which other cell types can be seeded. For example, we show that hepatocyte spheroids can be easily incorporated within this system, and that the seeding sequence influences the resulting structures after seven days in culture. STATEMENT OF SIGNIFICANCE: The field of liver tissue engineering has progressed significantly within the past several years, however engineering the intrahepatic biliary tree has remained a significant challenge. In this study, we utilize the inherent bioactivity of decellularized extracellular matrix (dECM) hydrogels and 3D-printing of a sacrificial biomaterial to create spatially defined, 3D biliary trees. The creation of patterned, 3D dECM hydrogels in the past has only been possible with additives to the gel that may stifle its bioactivity, or with rigid and permanent support structures that may present issues upon implantation. Additionally, the biological effect of 3D spatially patterned liver dECM has not been demonstrated independent of the effects of dECM bioactivity alone. This study demonstrates that sacrificial materials can be used to create pure, multi-layer dECM structures, and that strut width and angle can be changed to influence the formation and alignment of biliary trees encapsulated within. Furthermore, this strategy allows co-culture of other cells such as hepatocytes. We demonstrate that not only does this system show promise for tissue engineering the intrahepatic biliary tree, but it also aids in the study of duct formation and cell-cell interactions.


Subject(s)
Biliary Tract/growth & development , Epithelium/growth & development , Extracellular Matrix/metabolism , Hydrogels/pharmacology , Animals , Bile Ducts/drug effects , Biliary Tract/drug effects , Coculture Techniques , Epithelium/drug effects , Extracellular Matrix/drug effects , Female , Hepatocytes/cytology , Humans , Mice , Printing, Three-Dimensional , Swine , Tissue Scaffolds/chemistry
11.
Adv Healthc Mater ; 7(21): e1800538, 2018 11.
Article in English | MEDLINE | ID: mdl-30253081

ABSTRACT

Soft tissue fixation of implant and bioelectrodes relies on mechanical means (e.g., sutures, staples, and screws), with associated complications of tissue perforation, scarring, and interfacial stress concentrations. Adhesive bioelectrodes address these shortcomings with voltage cured carbene-based bioadhesives, locally energized through graphene interdigitated electrodes. Electrorheometry and adhesion structure activity relationships are explored with respect to voltage and electrolyte on bioelectrodes synthesized from graphene 3D-printed onto resorbable polyester substrates. Adhesive leachates effects on in vitro metabolism and human-derived platelet-rich plasma response serves to qualitatively assess biological response. The voltage activated bioadhesives are found to have gelation times of 60 s or less with maximum shear storage modulus (G') of 3 kPa. Shear modulus mimics reported values for human soft tissues (0.1-10 kPa). The maximum adhesion strength achieved for the ≈50 mg bioelectrode films is 170 g cm-2 (17 kPa), which exceeds the force required for tethering of electrodes on dynamic soft tissues. The method provides the groundwork for implantable bio/electrodes that may be permanently incorporated into soft tissues, vis-à-vis graphene backscattering wireless electronics since all components are bioresorbable.


Subject(s)
Graphite/chemistry , Polyesters/chemistry , Electrodes , Kinetics , Methane/analogs & derivatives , Methane/chemistry , Printing, Three-Dimensional
12.
Sci Rep ; 8(1): 12220, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111800

ABSTRACT

The biliary tree is an essential component of transplantable human liver tissue. Despite recent advances in liver tissue engineering, attempts at re-creating the intrahepatic biliary tree have not progressed significantly. The finer branches of the biliary tree are structurally and functionally complex and heterogeneous and require harnessing innate developmental processes for their regrowth. Here we demonstrate the ability of decellularized liver extracellular matrix (dECM) hydrogels to induce the in vitro formation of complex biliary networks using encapsulated immortalized mouse small biliary epithelial cells (cholangiocytes). This phenomenon is not observed using immortalized mouse large cholangiocytes, or with purified collagen 1 gels or Matrigel. We also show phenotypic stability via immunostaining for specific cholangiocyte markers. Moreover, tight junction formation and maturation was observed to occur between cholangiocytes, exhibiting polarization and transporter activity. To better define the mechanism of duct formation, we utilized three fluorescently labeled, but otherwise identical populations of cholangiocytes. The cells, in a proximity dependent manner, either branch out clonally, radiating from a single nucleation point, or assemble into multi-colored structures arising from separate populations. These findings present liver dECM as a promising biomaterial for intrahepatic bile duct tissue engineering and as a tool to study duct remodeling in vitro.


Subject(s)
Biliary Tract/metabolism , Extracellular Matrix/metabolism , Liver/metabolism , Animals , Bile Ducts/cytology , Bile Ducts/metabolism , Bile Ducts, Intrahepatic/cytology , Biliary Tract/cytology , Cell Line , Epithelial Cells/cytology , Female , Hydrogels/pharmacology , Liver/cytology , Mice , Swine
13.
Acta Biomater ; 76: 359-370, 2018 08.
Article in English | MEDLINE | ID: mdl-29890266

ABSTRACT

We present a novel additive manufacturing method for NiTi-Nb micro-trusses combining (i) extrusion-based 3D-printing of liquid inks containing NiTi and Nb powders, solvents, and a polymer binder into micro-trusses with 0/90° ABAB layers of parallel, ∼600 µm struts spaced 1 mm apart and (ii) subsequent heat-treatment to remove the binder and solvents, and then bond the NiTi powders using liquid phase sintering via the formation of a transient NiTi-Nb eutectic phase. We investigate the effects of Nb concentration (0, 1.5, 3.1, 6.7 at.% Nb) on the porosity, microstructure, and phase transformations of the printed NiTi-Nb micro-trusses. Micro-trusses with the highest Nb content exhibit long channels (from 3D-printing) and struts with smaller interconnected porosity (from partial sintering), resulting in overall porosities of ∼75% and low compressive stiffnesses of 1-1.6 GPa, similar to those of trabecular bone and in agreement with analytical and finite element modeling predictions. Diffusion of Nb into the NiTi particles from the bond regions results in a Ni-rich composition as the Nb replaces Ti atoms, leading to decreased martensite/austenite transformation temperatures. Adult human mesenchymal stem cells seeded on these micro-trusses showed excellent viability, proliferation, and extracellular matrix deposition over 14 days in culture. STATEMENT OF SIGNIFICANCE: Near-equiatomic NiTi micro-trusses are attractive for biomedical applications such as stents, actuators, and bone implants because of their combination of biocompatibility, low compressive stiffness, high surface area, and shape-memory or superelasticity. Extrusion-based 3D-printing of NiTi powder-based inks into micro-trusses is feasible, but the subsequent sintering of the powders into dense struts is unachievable due to low diffusivity, large particle size, and low packing density of the NiTi powders. We present a solution, whereby Nb powders are added to the NiTi inks, thus forming during sintering a eutectic NiTi-Nb liquid phase which bonds the solid NiTi powders and improves densification of the struts. This study investigates the microstructure, porosity, phase transformation behavior, compressive stiffness, and cytocompatibility of these printed NiTi-Nb micro-trusses.


Subject(s)
Materials Testing , Mesenchymal Stem Cells/metabolism , Nickel , Niobium , Printing, Three-Dimensional , Titanium , Trusses , Humans , Mesenchymal Stem Cells/cytology , Nickel/chemistry , Nickel/pharmacokinetics , Nickel/pharmacology , Niobium/chemistry , Niobium/pharmacokinetics , Niobium/pharmacology , Titanium/chemistry , Titanium/pharmacokinetics , Titanium/pharmacology
14.
Nano Lett ; 18(6): 3488-3493, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29709193

ABSTRACT

Hexagonal boron nitride (hBN) is a thermally conductive yet electrically insulating two-dimensional layered nanomaterial that has attracted significant attention as a dielectric for high-performance electronics in addition to playing a central role in thermal management applications. Here, we report a high-content hBN-polymer nanocomposite ink, which can be 3D printed to form mechanically robust, self-supporting constructs. In particular, hBN is dispersed in poly(lactic- co-glycolic acid) and 3D printed at room temperature through an extrusion process to form complex architectures. These constructs can be 3D printed with a composition of up to 60% vol hBN (solids content) while maintaining high mechanical flexibility and stretchability. The presence of hBN within the matrix results in enhanced thermal conductivity (up to 2.1 W K-1 m-1) directly after 3D printing with minimal postprocessing steps, suggesting utility in thermal management applications. Furthermore, the constructs show high levels of cytocompatibility, making them suitable for use in the field of printed bioelectronics.


Subject(s)
Biocompatible Materials/chemistry , Boron Compounds/chemistry , Nanocomposites/chemistry , Printing, Three-Dimensional , Humans , Mesenchymal Stem Cells/cytology , Nanocomposites/ultrastructure , Nanotechnology/methods , Surface Properties , Thermal Conductivity
15.
J Biomed Mater Res A ; 106(9): 2448-2462, 2018 09.
Article in English | MEDLINE | ID: mdl-29664217

ABSTRACT

Hydrogels, highly-hydrated crosslinked polymer networks, closely mimic the microenvironment of native extracellular matrix (ECM) and thus present as ideal platforms for three-dimensional cell culture. Hydrogels derived from tissue- and organ-specific decellularized ECM (dECM) may retain bioactive signaling cues from the native tissue or organ that could in turn modulate cell-material interactions and response. In this study, we demonstrate that porcine kidney dECM can be processed to form hydrogels suitable for cell culture and encapsulation studies. Scanning electron micrographs of hydrogels demonstrated a fibrous ultrastructure with interconnected pores, and rheological analysis revealed rapid gelation times with shear moduli dependent upon the protein concentration of the hydrogels. Conditionally-immortalized human glomerular endothelial cells (GEnCs) cultured on top of or encapsulated within hydrogels exhibited high cell viability and proliferation over a one-week culture period. However, gene expression analysis of GEnCs encapsulated within kidney dECM hydrogels revealed significantly lower expression of several relevant genes of interest compared to those encapsulated within hydrogels composed of only purified collagen I. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2448-2462, 2018.


Subject(s)
Cells, Immobilized/cytology , Endothelial Cells/cytology , Extracellular Matrix/chemistry , Hydrogels/pharmacology , Kidney Glomerulus/cytology , Rheology , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Immobilized/drug effects , Cells, Immobilized/metabolism , Collagen Type I/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Extracellular Matrix/ultrastructure , Female , Humans , Hydrogels/chemistry , Swine
16.
Acta Biomater ; 69: 63-70, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29317370

ABSTRACT

Three dimensional (3D) printing is highly amenable to the fabrication of tissue-engineered organs of a repetitive microstructure such as the liver. The creation of uniform and geometrically repetitive tissue scaffolds can also allow for the control over cellular aggregation and nutrient diffusion. However, the effect of differing geometries, while controlling for pore size, has yet to be investigated in the context of hepatocyte function. In this study, we show the ability to precisely control pore geometry of 3D-printed gelatin scaffolds. An undifferentiated hepatocyte cell line (HUH7) demonstrated high viability and proliferation when seeded on 3D-printed scaffolds of two different geometries. However, hepatocyte specific functions (albumin secretion, CYP activity, and bile transport) increases in more interconnected 3D-printed gelatin cultures compared to a less interconnected geometry and to 2D controls. Additionally, we also illustrate the disparity between gene expression and protein function in simple 2D culture modes, and that recreation of a physiologically mimetic 3D environment is necessary to induce both expression and function of cultured hepatocytes. STATEMENT OF SIGNIFICANCE: Three dimensional (3D) printing provides tissue engineers the ability spatially pattern cells and materials in precise geometries, however the biological effects of scaffold geometry on soft tissues such as the liver have not been rigorously investigated. In this manuscript, we describe a method to 3D print gelatin into well-defined repetitive geometries that show clear differences in biological effects on seeded hepatocytes. We show that a relatively simple and widely used biomaterial, such as gelatin, can significantly modulate biological processes when fabricated into specific 3D geometries. Furthermore, this study expands upon past research into hepatocyte aggregation by demonstrating how it can be manipulated to enhance protein function, and how function and expression may not precisely correlate in 2D models.


Subject(s)
Gelatin/chemistry , Gene Expression Regulation , Hepatocytes/cytology , Hepatocytes/metabolism , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Cell Line, Tumor , Humans , Porosity
17.
Adv Funct Mater ; 27(3)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-29104526

ABSTRACT

Using an innovative, tissue-independent approach to decellularized tissue processing and biomaterial fabrication, the development of a series of "tissue papers" derived from native porcine tissues/organs (heart, kidney, liver, muscle), native bovine tissue/organ (ovary and uterus), and purified bovine Achilles tendon collagen as a control from decellularized extracellular matrix particle ink suspensions cast into molds is described. Each tissue paper type has distinct microstructural characteristics as well as physical and mechanical properties, is capable of absorbing up to 300% of its own weight in liquid, and remains mechanically robust (E = 1-18 MPa) when hydrated; permitting it to be cut, rolled, folded, and sutured, as needed. In vitro characterization with human mesenchymal stem cells reveals that all tissue paper types support cell adhesion, viability, and proliferation over four weeks. Ovarian tissue papers support mouse ovarian follicle adhesion, viability, and health in vitro, as well as support, and maintain the viability and hormonal function of nonhuman primate and human follicle-containing, live ovarian cortical tissues ex vivo for eight weeks postmortem. "Tissue papers" can be further augmented with additional synthetic and natural biomaterials, as well as integrated with recently developed, advanced 3D-printable biomaterials, providing a versatile platform for future multi-biomaterial construct manufacturing.

18.
Tissue Eng Part A ; 23(21-22): 1274-1282, 2017 11.
Article in English | MEDLINE | ID: mdl-28586292

ABSTRACT

Extracellular vesicles (EVs) are nanometer-scale particles that are secreted by cells and mediate intercellular communication by transferring biomolecules between cells. Harnessing this mechanism for therapeutic biomolecule delivery represents a promising frontier for regenerative medicine and other clinical applications. One challenge to realizing this goal is that to date, our understanding of which factors affect EV uptake by recipient cells remains incomplete. In this study, we systematically investigated such delivery questions in the context of breast cancer cells, which are one of the most well-studied cell types with respect to EV delivery and therefore comprise a facile model system for this investigation. By displaying various targeting peptides on the EV surface, we observed that although displaying GE11 on EVs modestly increased uptake by MCF-7 cells, neuropeptide Y (NPY) display had no effect on uptake by the same cells. In contrast, neurotensin (NTS) and urokinase plasminogen activator (uPA) display reduced EV uptake by MDA-MB-231 cells. Interestingly, EV uptake rate did not depend on the source of the EVs; breast cancer cells demonstrated no increase in uptake on administration of breast cancer-derived EVs in comparison to HEK293FT-derived EVs. Moreover, EV uptake was greatly enhanced by delivery in the presence of polybrene and spinoculation, suggesting that maximal EV uptake rates are much greater than those observed under basal conditions in cell culture. By investigating how the cell's environment might provide cues that impact EV uptake, we also observed that culturing cells on soft matrices significantly enhanced EV uptake, compared to culturing on stiff tissue culture polystyrene. Each of these observations provides insights into the factors impacting EV uptake by breast cancer cells, while also providing a basis of comparison for systematically evaluating and perhaps enhancing EV uptake by various cell types.


Subject(s)
Breast Neoplasms/metabolism , Extracellular Vesicles/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Vesicles/drug effects , Female , HEK293 Cells , Hexadimethrine Bromide/pharmacology , Humans , Peptide Library , Receptors, Cell Surface/metabolism , Up-Regulation/drug effects
19.
Nat Commun ; 8: 15261, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28509899

ABSTRACT

Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle-scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover, pups are born through natural mating and thrive through maternal lactation. These findings present an in vivo functional ovarian implant designed with 3D printing, and indicate that scaffold pore architecture is a critical variable in additively manufactured scaffold design for functional tissue engineering.


Subject(s)
Bioartificial Organs , Bioprosthesis , Infertility, Female/therapy , Ovary , Tissue Scaffolds/chemistry , Animals , Cell Movement , Cell Survival , Cells, Cultured , Disease Models, Animal , Female , Humans , Hydrogels/chemistry , Infertility, Female/etiology , Male , Mice , Mice, Inbred C57BL , Oocytes , Ovulation , Porosity , Printing, Three-Dimensional , Sterilization, Reproductive , Tissue Engineering/methods
20.
Sci Rep ; 7: 44931, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28317904

ABSTRACT

Here, we present a comprehensive approach for creating robust, elastic, designer Lunar and Martian regolith simulant (LRS and MRS, respectively) architectures using ambient condition, extrusion-based 3D-printing of regolith simulant inks. The LRS and MRS powders are characterized by distinct, highly inhomogeneous morphologies and sizes, where LRS powder particles are highly irregular and jagged and MRS powder particles are rough, but primarily rounded. The inks are synthesized via simple mixing of evaporant, surfactant, and plasticizer solvents, polylactic-co-glycolic acid (30% by solids volume), and regolith simulant powders (70% by solids volume). Both LRS and MRS inks exhibit similar rheological and 3D-printing characteristics, and can be 3D-printed at linear deposition rates of 1-150 mm/s using 300 µm to 1.4 cm-diameter nozzles. The resulting LRS and MRS 3D-printed materials exhibit similar, but distinct internal and external microstructures and material porosity (~20-40%). These microstructures contribute to the rubber-like quasi-static and cyclic mechanical properties of both materials, with young's moduli ranging from 1.8 to 13.2 MPa and extension to failure exceeding 250% over a range of strain rates (10-1-102 min-1). Finally, we discuss the potential for LRS and MRS ink components to be reclaimed and recycled, as well as be synthesized in resource-limited, extraterrestrial environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...