Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3688, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355895

ABSTRACT

The area of fractional partial differential equations has recently become prominent for its ability to accurately simulate complex physical events. The search for traveling wave solutions for fractional partial differential equations is a difficult task, which has led to the creation of numerous mathematical approaches to tackle this problem. The primary objective of this research work is to provide optical soliton solutions for the Frictional Kundu-Eckhaus equation (FKEe) by utilizing generalized coefficients. This strategy utilizes the Riccati-Bernoulli sub-ODE technique to effectively discover the most favorable traveling wave solutions for fractional partial differential equations. As a result, it facilitates the extraction of optical solitons and intricate wave solutions. The Backlund transformation is used to methodically construct a sequence of solutions for the specified equations. The study additionally showcases 3D and Density graphics that visually depict chosen solutions for certain parameter selections, hence improving the understanding of the outcomes.

2.
Sci Rep ; 14(1): 1810, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245610

ABSTRACT

This work dives into the Conformable Stochastic Kraenkel-Manna-Merle System (CSKMMS), an important mathematical model for exploring phenomena in ferromagnetic materials. A wide spectrum of stochastic soliton solutions that include hyperbolic, trigonometric and rational functions, is generated using a modified version of Extended Direct Algebraic Method (EDAM) namely r+mEDAM. These stochastic soliton solutions have practical relevance for describing magnetic field behaviour in zero-conductivity ferromagnets. By using Maple to generate 2D and 3D graphical representations, the study analyses how stochastic terms and noise impact these soliton solutions. Finally, this study adds to our knowledge of magnetic field behaviour in ferromagnetic materials by shedding light on the effect of noise on soliton processes inside the CSKMMS.

3.
Sci Rep ; 13(1): 22400, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104222

ABSTRACT

Host (base) fluids are unable to deliver efficient heating and cooling processes in industrial applications due to their limited heat transfer rates. Nanofluids, owing to their distinctive and adaptable thermo-physical characteristics, find a widespread range of practical applications in various disciplines of nanotechnology and heat transfer equipment. The novel effect of this study is to determine the effects of mixed convection, and activation energy on 3D Sutterby nanofluid across a bi-directional extended surface under the impact of thermophoresis diffusion and convective heat dissipation. The flow equations are simplified in terms of partial differential equations (PDEs) and altered to non-dimensional ODEs by implementing classical scaling invariants. Numerical results have been obtained via the bvp4c approach. The physical insights of crucial and relevant parameters on flow and energy profiles are analysed through plotted visuals. Some factors have multiple solutions due to shrinking sheets. So stability analysis has been adapted to analyses stable solutions. Graphical representations demonstrate the reliability and accuracy of the numerical algorithm across a variety of pertinent parameters and conditions. A comparison between existing results and previously published data shows a high degree of compatibility between the two datasets. The present study extensively explored a multitude of practical applications across a diverse spectrum of fields, including but not limited to gas turbine technology, power generation, glass manufacturing, polymer production, wire coating, chemical production, heat exchangers, geothermal engineering, and food processing.

4.
Sci Rep ; 13(1): 17760, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853182

ABSTRACT

Nanomaterials have found wide applications in many fields, leading to significant interest in the scientific world, in particular automobile thermal control, heat reservoirs, freezers, hybrid control machines, paper creation, cooling organisms, etc. The aim of the present study is to investigate the MHD non-Newtonian nanofluid and time-based stability analysis to verify the stable branch by computing the smallest eigenvalue across a slendering, extending, or shrinking sheet with thermal radiation and chemical reactions. The basic flow equations have been obtained in terms of PDEs, which are then converted to ODEs in dimensionless form via a suitable transformation. Based on the MATLAB software package bvp4c, the numerical solution has been obtained for the system of equations. A comparative study of the present and published work is impressive. The influence of evolving factors such as Prandtl number, Schmidt number, magnetic factor, heat generation/absorption, thermal, thermophoresis factor, chemical factor, second-grade fluid factor, and Brownian number on the velocities, energy, and concentration patterns is discussed through graphs. It is perceived that the temperature distribution enriches owing to the greater magnitude of the heat source. Furthermore, it is observed that a greater magnitude of radiation improves the temperature curves. It is also investigated from the present analysis that concentration and temperature profiles increase due to the growing values of the thermophoresis factor.

5.
Entropy (Basel) ; 23(8)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34441226

ABSTRACT

This research article is dedicated to solving fractional-order parabolic equations using an innovative analytical technique. The Adomian decomposition method is well supported by natural transform to establish closed form solutions for targeted problems. The procedure is simple, attractive and is preferred over other methods because it provides a closed form solution for the given problems. The solution graphs are plotted for both integer and fractional-order, which shows that the obtained results are in good contact with the exact solution of the problems. It is also observed that the solution of fractional-order problems are convergent to the solution of integer-order problem. In conclusion, the current technique is an accurate and straightforward approximate method that can be applied to solve other fractional-order partial differential equations.

6.
Entropy (Basel) ; 21(4)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-33267049

ABSTRACT

In the present article, we related the analytical solution of the fractional-order dispersive partial differential equations, using the Laplace-Adomian decomposition method. The Caputo operator is used to define the derivative of fractional-order. Laplace-Adomian decomposition method solutions for both fractional and integer orders are obtained in series form, showing higher convergence of the proposed method. Illustrative examples are considered to confirm the validity of the present method. The fractional order solutions that are convergent to integer order solutions are also investigated.

7.
Entropy (Basel) ; 21(6)2019 Jun 03.
Article in English | MEDLINE | ID: mdl-33267271

ABSTRACT

In the present article, fractional-order diffusion equations are solved using the Natural transform decomposition method. The series form solutions are obtained for fractional-order diffusion equations using the proposed method. Some numerical examples are presented to understand the procedure of the Natural transform decomposition method. The Natural transform decomposition method has shown the least volume of calculations and a high rate of convergence compared to other analytical techniques, the proposed method can also be easily applied to other non-linear problems. Therefore, the Natural transform decomposition method is considered to be one of the best analytical technique, to solve fractional-order linear and non-linear partial deferential equations, particularly fractional-order diffusion equation.

8.
Entropy (Basel) ; 21(6)2019 Jun 16.
Article in English | MEDLINE | ID: mdl-33267311

ABSTRACT

In the present article, fractional-order heat and wave equations are solved by using the natural transform decomposition method. The series form solutions are obtained for fractional-order heat and wave equations, using the proposed method. Some numerical examples are presented to understand the procedure of natural transform decomposition method. The natural transform decomposition method procedure has shown that less volume of calculations and a high rate of convergence can be easily applied to other nonlinear problems. Therefore, the natural transform decomposition method is considered to be one of the best analytical techniques, in order to solve fractional-order linear and nonlinear Partial deferential equations, particularly fractional-order heat and wave equation.

SELECTION OF CITATIONS
SEARCH DETAIL
...