Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Nat Med ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834850

ABSTRACT

Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, cardiovascular, pulmonary and neurological health, challenges in the feasibility and reproducibility of CRF measurements have impeded its use for clinical decision-making. Here we link proteomic profiles to CRF in 14,145 individuals across four international cohorts with diverse CRF ascertainment methods to establish, validate and characterize a proteomic CRF score. In a cohort of around 22,000 individuals in the UK Biobank, a proteomic CRF score was associated with a reduced risk of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence interval 0.48-0.52) per 1 s.d. increase). The proteomic CRF score was also associated with multisystem disease risk and provided risk reclassification and discrimination beyond clinical risk factors, as well as modulating high polygenic risk of certain diseases. Finally, we observed dynamicity of the proteomic CRF score in individuals who undertook a 20-week exercise training program and an association of the score with the degree of the effect of training on CRF, suggesting potential use of the score for personalization of exercise recommendations. These results indicate that population-based proteomics provides biologically relevant molecular readouts of CRF that are additive to genetic risk, potentially modifiable and clinically translatable.

2.
J Am Heart Assoc ; 13(9): e032944, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38700001

ABSTRACT

BACKGROUND: The relation of cardiorespiratory fitness (CRF) to lifestyle behaviors and factors linked with cardiovascular health remains unclear. We aimed to understand how the American Heart Association's Life's Essential 8 (LE8) score (and its changes over time) relate to CRF and complementary exercise measures in community-dwelling adults. METHODS AND RESULTS: Framingham Heart Study (FHS) participants underwent maximum effort cardiopulmonary exercise testing for direct quantification of peak oxygen uptake (V̇O2). A 100-point LE8 score was constructed as the average across 8 factors: diet, physical activity, nicotine exposure, sleep, body mass index, lipids, blood glucose, and blood pressure. We related total LE8 score, score components, and change in LE8 score over 8 years with peak V̇O2 (log-transformed) and complementary CRF measures. In age- and sex-adjusted linear models (N=1838, age 54±9 years, 54% women, LE8 score 76±12), a higher LE8 score was associated favorably with peak V̇O2, ventilatory efficiency, resting heart rate, and blood pressure response to exercise (all P<0.0001). A clinically meaningful 5-point higher LE8 score was associated with a 6.0% greater peak V̇O2 (≈1.4 mL/kg per minute at sample mean). All LE8 components were significantly associated with peak V̇O2 in models adjusted for age and sex, but blood lipids, diet, and sleep health were no longer statistically significant after adjustment for all LE8 components. Over an ≈8-year interval, a 5-unit increase in LE8 score was associated with a 3.7% higher peak V̇O2 (P<0.0001). CONCLUSIONS: Higher LE8 score and improvement in LE8 over time was associated with greater CRF, highlighting the importance of the LE8 factors in maintaining CRF.


Subject(s)
Cardiorespiratory Fitness , Oxygen Consumption , Humans , Female , Male , Middle Aged , Oxygen Consumption/physiology , Aged , Exercise Test , Exercise/physiology , Blood Pressure/physiology , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/epidemiology , Adult , Sleep/physiology , Body Mass Index , Health Status , Independent Living , Lipids/blood , Time Factors , Blood Glucose/metabolism , Healthy Lifestyle , Heart Rate/physiology , Risk Reduction Behavior
3.
Cell Rep Med ; 5(5): 101548, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703763

ABSTRACT

While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.


Subject(s)
Body Mass Index , Weight Gain , Humans , Male , Female , Adult , Obesity/metabolism , Obesity/genetics , Young Adult , Metabolomics , Energy Metabolism , Proteomics/methods , Gastrointestinal Microbiome , Metabolome
4.
medRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645000

ABSTRACT

The emerging field of precision nutrition is based on the notion that inter-individual responses across diets of different calorie-macronutrient content may contribute to inter-individual differences in metabolism, adiposity, and weight gain. Free-living diet studies have been traditionally challenged by difficulties in controlling adherence to prescribed calories and macronutrient content and rarely allow a period of metabolic stability prior to metabolic measures (to minimize influences of weight changes). In this context, key physiologic measures central to precision nutrition responses may be most precisely quantified via whole room indirect calorimetry over 24-h, in which precise control of activity and nutrition can be achieved. In addition, these studies represent unique "N of 1" human crossover metabolic-physiologic experiments during which specific molecular pathways central to nutrient metabolism may be discerned. Here, we quantified 263 circulating metabolites during a ≈40-day inpatient admission in which up to 94 participants underwent seven monitored 24-h nutritional interventions of differing macronutrient composition in a whole-room indirect calorimeter to capture precision metabolic responses. Broadly, we observed heterogenous responses in metabolites across dietary chambers, with the exception of carnitines which tracked with 24-h respiratory quotient. We identified excursions in shared metabolic species (e.g., carnitines, glycerophospholipids, amino acids) that mapped onto gold-standard calorimetric measures of substrate oxidation preference and lipid availability. These findings support a coordinated metabolic-physiologic response to nutrition, highlighting the relevance of these controlled settings to uncover biological pathways of energy utilization during precision nutrition studies.

5.
Circ Res ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662804

ABSTRACT

BACKGROUND: The biological mechanisms linking environmental exposures with cardiovascular disease pathobiology are incompletely understood. We sought to identify circulating proteomic signatures of environmental exposures and examine their associations with cardiometabolic and respiratory disease in observational cohort studies. METHODS: We tested the relations of >6500 circulating proteins with 29 environmental exposures across the built environment, green space, air pollution, temperature, and social vulnerability indicators in ≈3000 participants of the CARDIA study (Coronary Artery Risk Development in Young Adults) across 4 centers using penalized and ordinary linear regression. In >3500 participants from FHS (Framingham Heart Study) and JHS (Jackson Heart Study), we evaluated the prospective relations of proteomic signatures of the envirome with cardiovascular disease and mortality using Cox models. RESULTS: Proteomic signatures of the envirome identified novel/established cardiovascular disease-relevant pathways including DNA damage, fibrosis, inflammation, and mitochondrial function. The proteomic signatures of the envirome were broadly related to cardiometabolic disease and respiratory phenotypes (eg, body mass index, lipids, and left ventricular mass) in CARDIA, with replication in FHS/JHS. A proteomic signature of social vulnerability was associated with a composite of cardiovascular disease/mortality (1428 events; FHS: hazard ratio, 1.16 [95% CI, 1.08-1.24]; P=1.77×10-5; JHS: hazard ratio, 1.25 [95% CI, 1.13-1.38]; P=6.38×10-6; hazard ratioexpressed as per 1 SD increase in proteomic signature), robust to adjustment for known clinical risk factors. CONCLUSIONS: Environmental exposures are related to an inflammatory-metabolic proteome, which identifies individuals with cardiometabolic disease and respiratory phenotypes and outcomes. Future work examining the dynamic impact of the environment on human cardiometabolic health is warranted.

6.
Circ Genom Precis Med ; 17(1): e004192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38323454

ABSTRACT

BACKGROUND: The circulating proteome may encode early pathways of diabetes susceptibility in young adults for surveillance and intervention. Here, we define proteomic correlates of tissue phenotypes and diabetes in young adults. METHODS: We used penalized models and principal components analysis to generate parsimonious proteomic signatures of diabetes susceptibility based on phenotypes and on diabetes diagnosis across 184 proteins in >2000 young adults in the CARDIA (Coronary Artery Risk Development in Young Adults study; mean age, 32 years; 44% women; 43% Black; mean body mass index, 25.6±4.9 kg/m2), with validation against diabetes in >1800 individuals in the FHS (Framingham Heart Study) and WHI (Women's Health Initiative). RESULTS: In 184 proteins in >2000 young adults in CARDIA, we identified 2 proteotypes of diabetes susceptibility-a proinflammatory fat proteotype (visceral fat, liver fat, inflammatory biomarkers) and a muscularity proteotype (muscle mass), linked to diabetes in CARDIA and WHI/FHS. These proteotypes specified broad mechanisms of early diabetes pathogenesis, including transorgan communication, hepatic and skeletal muscle stress responses, vascular inflammation and hemostasis, fibrosis, and renal injury. Using human adipose tissue single cell/nuclear RNA-seq, we demonstrate expression at transcriptional level for implicated proteins across adipocytes and nonadipocyte cell types (eg, fibroadipogenic precursors, immune and vascular cells). Using functional assays in human adipose tissue, we demonstrate the association of expression of genes encoding these implicated proteins with adipose tissue metabolism, inflammation, and insulin resistance. CONCLUSIONS: A multifaceted discovery effort uniting proteomics, underlying clinical susceptibility phenotypes, and tissue expression patterns may uncover potentially novel functional biomarkers of early diabetes susceptibility in young adults for future mechanistic evaluation.


Subject(s)
Diabetes Mellitus, Type 2 , Proteomics , Humans , Female , Young Adult , Adult , Male , Adipose Tissue , Inflammation , Biomarkers/metabolism
8.
Arterioscler Thromb Vasc Biol ; 44(4): 969-975, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385288

ABSTRACT

BACKGROUND: Preeclampsia is a hypertensive disorder of pregnancy characterized by widespread vascular inflammation. It occurs frequently in pregnancy, often without known risk factors, and has high rates of maternal and fetal morbidity and mortality. Identification of biomarkers that predict preeclampsia and its cardiovascular sequelae before clinical onset, or even before pregnancy, is a critical unmet need for the prevention of adverse pregnancy outcomes. METHODS: We explored differences in cardiovascular proteomics (Olink Explore 384) in 256 diverse pregnant persons across 2 centers (26% Hispanic, 21% Black). RESULTS: We identified significant differences in plasma abundance of markers associated with angiogenesis, blood pressure, cell adhesion, inflammation, and metabolism between individuals delivering with preeclampsia and controls, some of which have not been widely described previously and are not represented in the preeclampsia placental transcriptome. While we observed a broadly similar pattern in early (<34 weeks) versus late (≥34 weeks) preeclampsia, several proteins related to hemodynamic stress, hemostasis, and immune response appeared to be more highly dysregulated in early preeclampsia relative to late preeclampsia. CONCLUSIONS: These results demonstrate the value of performing targeted proteomics using a panel of cardiovascular biomarkers to identify biomarkers relevant to preeclampsia pathophysiology and highlight the need for larger multiomic studies to define modifiable pathways of surveillance and intervention upstream to preeclampsia diagnosis.


Subject(s)
Cardiovascular Diseases , Pre-Eclampsia , Pregnancy , Female , Humans , Pre-Eclampsia/diagnosis , Placenta , Pregnancy Outcome , Biomarkers , Inflammation/complications , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/complications , Placenta Growth Factor
9.
Prog Cardiovasc Dis ; 82: 102-112, 2024.
Article in English | MEDLINE | ID: mdl-38244827

ABSTRACT

Left ventricular (LV) systolic dysfunction represents a highly treatable cause of heart failure (HF). A substantial proportion of patients with HF with reduced ejection fraction (EF;HFrEF) demonstrate improvement in LV systolic function (termed HF with improved EF [HFimpEF]), either spontaneously or when treated with guideline-directed medical therapy (GDMT). Although it is a relatively new HF classification, HFimpEF has emerged in recent years as an important and distinct clinical entity. Improvement in LVEF leads to decreased rates of mortality and adverse HF-related outcomes compared to patients with sustained LV systolic dysfunction (HFrEF). While numerous clinical and imaging factors have been associated with HFimpEF, identification of which patients do and do not improve requires further investigation. In addition, patients improve at different rates, and what determines the trajectory of HFimpEF patients after improvement is incompletely characterized. A proportion of patients maintain improvement in LV systolic function, while others experience a recrudescence of systolic dysfunction, especially with GDMT discontinuation. In this review we discuss the contemporary guideline-recommended classification definition of HFimpEF, the epidemiology of improvement in LV systolic function, and the clinical course of this unique patient population. We also offer evidence-based recommendations for the clinical management of HFimpEF and provide a roadmap for future directions in understanding and improving outcomes in the care of patients with HFimpEF.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Humans , Heart Failure/diagnosis , Heart Failure/therapy , Stroke Volume , Ventricular Function, Left , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/therapy , Echocardiography
10.
Aging Cell ; 23(4): e14090, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287525

ABSTRACT

Aging is increasingly thought to involve dysregulation of metabolism in multiple organ systems that culminate in decreased functional capacity and morbidity. Here, we seek to understand complex interactions among metabolism, aging, and systems-wide phenotypes across the lifespan. Among 2469 adults (mean age 74.7 years; 38% Black) in the Health, Aging and Body Composition study we identified metabolic cross-sectionally correlates across 20 multi-dimensional aging-related phenotypes spanning seven domains. We used LASSO-PCA and bioinformatic techniques to summarize metabolome-phenome relationships and derive metabolic scores, which were subsequently linked to healthy aging, mortality, and incident outcomes (cardiovascular disease, disability, dementia, and cancer) over 9 years. To clarify the relationship of metabolism in early adulthood to aging, we tested association of these metabolic scores with aging phenotypes/outcomes in 2320 participants (mean age 32.1, 44% Black) of the Coronary Artery Risk Development in Young Adults (CARDIA) study. We observed significant overlap in metabolic correlates across the seven aging domains, specifying pathways of mitochondrial/cellular energetics, host-commensal metabolism, inflammation, and oxidative stress. Across four metabolic scores (body composition, mental-physical performance, muscle strength, and physical activity), we found strong associations with healthy aging and incident outcomes, robust to adjustment for risk factors. Metabolic scores for participants four decades younger in CARDIA were related to incident cardiovascular, metabolic, and neurocognitive performance, as well as long-term cardiovascular disease and mortality over three decades. Conserved metabolic states are strongly related to domain-specific aging and outcomes over the life-course relevant to energetics, host-commensal interactions, and mechanisms of innate immunity.


Subject(s)
Cardiovascular Diseases , Healthy Aging , Young Adult , Humans , Adult , Aged , Longevity , Aging , Risk Factors
12.
Obesity (Silver Spring) ; 32(2): 423-435, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38269471

ABSTRACT

OBJECTIVE: Genetic studies have suggested that the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine have a causal association with type 2 diabetes (T2D). However, inferences are based on a limited number of genetic loci associated with BCAAs. METHODS: Instrumental variables (IVs) for each BCAA were constructed and validated using large well-powered data sets and their association with T2D was tested using a two-sample inverse-variance weighted Mendelian randomization approach. Sensitivity analyses were performed to ensure the accuracy of the findings. A reverse association was assessed using instrumental variables for T2D. RESULTS: Estimated effect sizes between BCAA IVs and T2D, excluding outliers, were as follows: valine (ß = 0.14 change in log-odds per SD change in valine, 95% CI: -0.06 to 0.33, p = 0.17), leucine (ß = 0.15, 95% CI: -0.02 to 0.32, p = 0.09), and isoleucine (ß = 0.13, 95% CI: -0.08 to 0.34, p = 0.24). In contrast, T2D IVs were positively associated with each BCAA, i.e., valine (ß = 0.08 per SD change in levels per log-odds change in T2D, 95% CI: 0.05 to 0.10, p = 1.8 × 10-9 ), leucine (ß = 0.06, 95% CI: 0.04 to 0.09, p = 4.5 × 10-8 ), and isoleucine (ß = 0.06, 95% CI: 0.04 to 0.08, p = 2.8 × 10-8 ). CONCLUSIONS: These data suggest that the BCAAs are not mediators of T2D risk but are biomarkers of diabetes.


Subject(s)
Amino Acids, Branched-Chain , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Mendelian Randomization Analysis , Isoleucine/genetics , Leucine/genetics , Valine/genetics
13.
Geroscience ; 46(2): 2371-2389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37968423

ABSTRACT

Older women and Black individuals are more likely to experience frailty. A metabolomic characterization of frailty may help inform more effective interventions aimed at improving health, reducing disparities, and preventing frailty with aging. We sought to identify metabolites and pathways associated with vigor to frailty and determine whether associations differed by sex and/or race among n = 2189 older Black and White men and women from the Health, Aging, and Body Composition (Health ABC) study. Fasting plasma metabolites were measured using liquid chromatography-mass spectrometry. Vigor to frailty was based on weight change, physical activity, gait speed, grip strength, and usual energy. We used linear regression of a single metabolite on vigor to frailty, adjusting for age, sex, race, study site, and multiple comparisons using a Bonferroni correction. Among 500 metabolites, 113 were associated with vigor to frailty (p < 0.0001). Associations between metabolites and vigor to frailty did not differ significantly by race and/or sex. Lower amino acids, glycerophospholipids, sphingolipids, and dehydroepiandrosterone sulfate and higher acylcarnitines, fatty acids, amino acid derivatives, organic acids, carbohydrates, citric acid cycle metabolites, and trimethylamine oxide were associated with frailer scores. Pathway analyses identified the citric acid cycle as containing more frailty-associated metabolites than expected by chance (p = 0.00005). Calories and protein intake did not differ by vigor to frailty. Frailer Health ABC participants may have lower utilization of energy pathways, potentially as a result of less demand and less efficient utilization of similar amounts of nutrients when compared to more vigorous participants.


Subject(s)
Frailty , Metabolome , Aged , Female , Humans , Male , Aging , Hand Strength , Independent Living , Black or African American , White
14.
Am J Clin Nutr ; 119(1): 29-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865185

ABSTRACT

BACKGROUND: The potential role for choline metabolite trimethylamine N-oxide (TMAO) in cardiovascular disease (CVD) has garnered much attention, but there have been limited data from diverse population-based cohorts. Furthermore, few studies have included circulating choline and betaine, which can serve as precursors to TMAO and may independently influence CVD. OBJECTIVE: We quantified prospective associations between 3 choline metabolites and 19-y incident CVD in a population-based cohort and tested effect modification of metabolite-CVD associations by kidney function. METHODS: Data were from the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a prospective cohort with recruitment from 4 US urban centers (year 0: 1985-1986, n = 5115, ages 18-30). The analytic sample included 3444 White and Black males and females, aged 33 to 45, who attended the year 15 follow-up exam and did not have prevalent CVD. TMAO, choline, and betaine were quantitated from stored plasma (-70°C) using liquid-chromatography mass-spectrometry. Nineteen-year incident CVD events (n = 221), including coronary heart disease and stroke, were identified through adjudicated hospitalization records and linkage with the National Death Register. RESULTS: Plasma choline was positively associated with CVD in Cox proportional hazards regression analysis adjusted for demographics, health behaviors, CVD risk factors, and metabolites (hazard ratio: 1.24; 95% CI: 1.09, 1.40 per standard deviation-unit choline). TMAO and betaine were not associated with CVD in an identically adjusted analysis. There was statistical evidence for effect modification by kidney function with CVD positively associated with TMAO and negatively associated with betaine at lower values of estimated glomerular filtration rate (interaction P values: 0.0046 and 0.020, respectively). CONCLUSIONS: Our findings are consistent with a positive association between plasma choline and incident CVD. Among participants with lower kidney function, TMAO was positively, and betaine negatively, associated with CVD. These results further our understanding of the potential role for choline metabolism on CVD risk.


Subject(s)
Betaine , Cardiovascular Diseases , Male , Female , Humans , Young Adult , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Coronary Vessels , Choline , Methylamines , Risk Factors
15.
Nat Commun ; 14(1): 7557, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985769

ABSTRACT

Systemic inflammation has been implicated in the pathobiology of heart failure with preserved ejection fraction (HFpEF). Here, we examine the association of upstream mediators of inflammation as ascertained by fatty-acid derived eicosanoid and eicosanoid-related metabolites with HFpEF status and exercise manifestations of HFpEF. Among 510 participants with chronic dyspnea and preserved LVEF who underwent invasive cardiopulmonary exercise testing, we find that 70 of 890 eicosanoid and related metabolites are associated with HFpEF status, including 17 named and 53 putative eicosanoids (FDR q-value < 0.1). Prostaglandin (15R-PGF2α, 11ß-dhk-PGF2α) and linoleic acid derivatives (12,13 EpOME) are associated with greater odds of HFpEF, while epoxides (8(9)-EpETE), docosanoids (13,14-DiHDPA), and oxylipins (12-OPDA) are associated with lower odds of HFpEF. Among 70 metabolites, 18 are associated with future development of heart failure in the community. Pro- and anti-inflammatory eicosanoid and related metabolites may contribute to the pathogenesis of HFpEF and serve as potential targets for intervention.


Subject(s)
Heart Failure , Humans , Stroke Volume , Dyspnea , Exercise Test , Eicosanoids , Exercise Tolerance
16.
J Am Heart Assoc ; 12(21): e029980, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37889181

ABSTRACT

BACKGROUND: While exercise impairments are central to symptoms and diagnosis of heart failure with preserved ejection fraction (HFpEF), prior studies of HFpEF biomarkers have mostly focused on resting phenotypes. We combined precise exercise phenotypes with cardiovascular proteomics to identify protein signatures of HFpEF exercise responses and new potential therapeutic targets. METHODS AND RESULTS: We analyzed 277 proteins (Olink) in 151 individuals (N=103 HFpEF, 48 controls; 62±11 years; 56% women) with cardiopulmonary exercise testing with invasive monitoring. Using ridge regression adjusted for age/sex, we defined proteomic signatures of 5 physiological variables involved in HFpEF: peak oxygen uptake, peak cardiac output, pulmonary capillary wedge pressure/cardiac output slope, peak pulmonary vascular resistance, and peak peripheral O2 extraction. Multiprotein signatures of each of the exercise phenotypes captured a significant proportion of variance in respective exercise phenotypes. Interrogating the importance (ridge coefficient magnitude) of specific proteins in each signature highlighted proteins with putative links to HFpEF pathophysiology (eg, inflammatory, profibrotic proteins), and novel proteins linked to distinct physiologies (eg, proteins involved in multiorgan [kidney, liver, muscle, adipose] health) were implicated in impaired O2 extraction. In a separate sample (N=522, 261 HF events), proteomic signatures of peak oxygen uptake and pulmonary capillary wedge pressure/cardiac output slope were associated with incident HFpEF (odds ratios, 0.67 [95% CI, 0.50-0.90] and 1.43 [95% CI, 1.11-1.85], respectively) with adjustment for clinical factors and B-type natriuretic peptides. CONCLUSIONS: The cardiovascular proteome is associated with precision exercise phenotypes in HFpEF, suggesting novel mechanistic targets and potential methods for risk stratification to prevent HFpEF early in its pathogenesis.


Subject(s)
Heart Failure , Humans , Female , Male , Stroke Volume/physiology , Pilot Projects , Proteomics , Phenotype , Oxygen/metabolism , Exercise Test/methods , Exercise Tolerance/physiology
17.
J Am Heart Assoc ; 12(21): e029619, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37850464

ABSTRACT

Background During exercise, a healthy arterial system facilitates increased blood flow and distributes it effectively to essential organs. Accordingly, we sought to understand how arterial stiffening might impair cardiorespiratory fitness in community-dwelling individuals. Methods and Results Arterial tonometry and maximum effort cardiopulmonary exercise testing were performed on Framingham Heart Study participants (N=2898, age 54±9 years, 53% women, body mass index 28.1±5.3 kg/m2). We related 5 arterial stiffness measures (carotid-femoral pulse wave velocity [CFPWV]: a measure of aortic wall stiffness; central pulse pressure, forward wave amplitude, characteristic impedance: measures of pressure pulsatility; and augmentation index: a measure of relative wave reflection) to multidimensional exercise responses using linear models adjusted for age, sex, resting heart rate, habitual physical activity, and clinical risk factors. Greater CFPWV, augmentation index, and characteristic impedance were associated with lower peak oxygen uptake (VO2; all P<0.0001). We observed consistency of associations of CFPWV with peak oxygen uptake across age, sex, and cardiovascular risk profile (interaction P>0.05). However, the CFPWV-peak oxygen uptake relation was attenuated in individuals with obesity (P=0.002 for obesity*CFPWV interaction). Higher CPFWV, augmentation index, and characteristic impedance were also related to cardiopulmonary exercise testing measures reflecting adverse O2 kinetics and lower stroke volume and peripheral O2 extraction but not to ventilatory efficiency, a prognostic measure of right ventricular-pulmonary vascular performance. Conclusions Our findings delineate relations of arterial stiffness and cardiorespiratory fitness in community-dwelling individuals. Future studies are warranted to evaluate whether the physiological measures implicated here may represent potential targets for improving cardiorespiratory fitness in the general population.


Subject(s)
Cardiorespiratory Fitness , Vascular Stiffness , Humans , Female , Middle Aged , Male , Vascular Stiffness/physiology , Pulse Wave Analysis , Obesity , Oxygen
19.
Am J Hypertens ; 36(9): 517-523, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37208017

ABSTRACT

BACKGROUND: The effects of the renin-angiotensin-aldosterone system in cardiovascular system have been described based on small studies. The aim of this study was to evaluate the relationship between aldosterone and plasma renin activity (PRA) and cardiovascular structure and function. METHODS: We studied a random sample of Multi-Ethnic Study of Atherosclerosis participants who had aldosterone and PRA blood assays at 2003-2005 and underwent cardiac magnetic resonance at 2010. Participants taking angiotensin-converting enzyme inhibitors or angiotensin receptor blockers were excluded. RESULTS: The aldosterone group was composed by 615 participants, mean age 61.6 ± 8.9 years, while the renin group was 580 participants, mean age 61.5 ± 8.8 years and both groups had roughly 50% females. In multivariable analysis, 1 SD increment of log-transformed aldosterone level was associated with 0.07 g/m2 higher left ventricle (LV) mass index (P = 0.04) and 0.11 ml/m2 higher left atrium (LA) minimal volume index (P < 0.01). Additionally, higher log-transformed aldosterone was associated with lower LA maximum strain and LA emptying fraction (P < 0.01). Aldosterone levels were not significantly associated with aortic measures. Log-transformed PRA was associated with lower LV end diastolic volume index (ß standardized = 0.08, P = 0.05). PRA levels were not significantly associated with LA and aortic structural or functional differences. CONCLUSIONS: Higher levels of aldosterone and PRA are associated with concentric LV remodeling changes. Moreover, aldosterone was related to deleterious LA remodeling changes.


Subject(s)
Atherosclerosis , Cardiovascular System , Female , Humans , Middle Aged , Aged , Male , Renin-Angiotensin System , Renin , Aldosterone , Magnetic Resonance Spectroscopy
20.
Eur J Prev Cardiol ; 30(14): 1450-1461, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37164358

ABSTRACT

AIMS: To evaluate the associations of dietary indices and quantitative cardiorespiratory fitness (CRF) measures in a large, community-based sample harnessing metabolomic profiling to interrogate shared biology. METHODS AND RESULTS: Framingham Heart Study (FHS) participants underwent maximum effort cardiopulmonary exercise tests for CRF quantification (via peak VO2) and completed semi-quantitative food frequency questionnaires. Dietary quality was assessed by the Alternative Healthy Eating Index (AHEI) and Mediterranean-style Diet Score (MDS), and fasting blood concentrations of 201 metabolites were quantified. In 2380 FHS participants (54 ± 9 years, 54% female, body mass index 28 ± 5 kg/m2), 1 SD higher AHEI and MDS were associated with 5.2% (1.2 mL/kg/min, 95% CI 4.3-6.0%, P < 0.0001) and 4.5% (1.0 mL/kg/min, 95% CI 3.6-5.3%, P < 0.0001) greater peak VO2 in linear models adjusted for age, sex, total daily energy intake, cardiovascular risk factors, and physical activity. In participants with metabolite profiling (N = 1154), 24 metabolites were concordantly associated with both dietary indices and peak VO2 in multivariable-adjusted linear models (FDR < 5%). Metabolites that were associated with lower CRF and poorer dietary quality included C6 and C7 carnitines, C16:0 ceramide, and dimethylguanidino valeric acid, and metabolites that were positively associated with higher CRF and favourable dietary quality included C38:7 phosphatidylcholine plasmalogen and C38:7 and C40:7 phosphatidylethanolamine plasmalogens. CONCLUSION: Higher diet quality is associated with greater CRF cross-sectionally in a middle-aged community-dwelling sample, and metabolites highlight potential shared favourable effects on cardiometabolic health.


This study seeks to address whether healthy dietary patterns relate to gold-standard measures of physical fitness in community-dwelling adults and how circulating metabolites can demonstrate biological relationships between diet and fitness. Healthy diet is associated with greater physical fitness in middle-aged adults. The beneficial relationship between diet and fitness may be partly explained by favourable metabolic health.


Subject(s)
Cardiorespiratory Fitness , Diet, Mediterranean , Middle Aged , Humans , Female , Male , Health Status , Exercise , Diet, Healthy
SELECTION OF CITATIONS
SEARCH DETAIL
...