Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 421(2): 477-81, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22019765

ABSTRACT

We report here that under different physiological conditions, biomolecular drugs can be stockpiled in a nanoporous support and afterward can be instantly released when needed for acute responses, and the biomolecular drug molecules can also be gradually released from the nanoporous support over a long time for a complete recovery. Organophosphorus acid anhydrolase (OPAA) was spontaneously and largely entrapped in functionalized mesoporous silica (FMS) due to the dominant electrostatic interaction. The OPAA-FMS composite exhibited a burst release in a pH 9.0 NaHCO3-Na2CO3 buffer system and a gradual release in pH 7.4 simulated body fluid. The binding of OPAA to NH2-FMS can result in less tyrosinyl and tryptophanyl exposure OPAA molecules to aqueous environment. The bound OPAA in FMS displayed lower activity than the free OPAA in solution prior to the enzyme entrapment. However, the released enzyme maintained the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. The in vitro results in the rabbit serum demonstrate that both OPAA-FMS and the released OPAA may be used as a medical countermeasure against the organophosphorus nerve agents.


Subject(s)
Aryldialkylphosphatase/chemistry , Chemical Warfare Agents/chemistry , Enzymes, Immobilized/chemistry , Nervous System/drug effects , Silicon Dioxide/chemistry , Animals , Chemical Warfare Agents/toxicity , Microscopy, Electron, Transmission , Rabbits , Spectrometry, Fluorescence
2.
Archaea ; 2011: 565127, 2011.
Article in English | MEDLINE | ID: mdl-22162664

ABSTRACT

Prolidases hydrolyze Xaa-Pro dipeptides and can also cleave the P-F and P-O bonds found in organophosphorus (OP) compounds, including the nerve agents soman and sarin. Ph1prol (PH0974) has previously been isolated and characterized from Pyrococcus horikoshii and was shown to have higher catalytic activity over a broader pH range, higher affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pfprol (PF1343). To obtain a better enzyme for OP nerve agent decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes were prepared. Four Ph1prol mutants (A195T/G306S-, Y301C/K342N-, E127G/E252D-, and E36V-Ph1prol) were isolated which had greater thermostability and improved activity over a broader range of temperatures against Xaa-Pro dipeptides and OP nerve agents compared to wild type Pyrococcus prolidases.


Subject(s)
Chemical Warfare Agents/metabolism , Dipeptidases/metabolism , Mutation , Organophosphates/metabolism , Pyrococcus horikoshii/enzymology , Biotransformation , Dipeptidases/genetics , Enzyme Stability , Hydrogen-Ion Concentration , Mutant Proteins/genetics , Mutant Proteins/metabolism , Pyrococcus horikoshii/chemistry , Pyrococcus horikoshii/metabolism , Sarin/metabolism , Soman/metabolism , Temperature
3.
Int J Microbiol ; 2011: 132627, 2011.
Article in English | MEDLINE | ID: mdl-21792355

ABSTRACT

Development of a rapid field test is needed capable of determining if field supplies of water are safe to drink by the warfighter during a military operation. The present study sought to assess the effectiveness of handheld assays (HHAs) in detecting ricin and Staphylococcal Enterotoxin B (SEB) in water. Performance of HHAs was evaluated in formulated tap water with and without chlorine, reverse osmosis water (RO) with chlorine, and RO with bromine. Each matrix was prepared, spiked with ricin or SEB at multiple concentrations, and then loaded onto HHAs. HHAs were allowed to develop and then read visually. Limits of detection (LOD) were determined for all HHAs in each water type. Both ricin and SEB were detected by HHAs in formulated tap water at or below the suggested health effect levels of 455 ng/mL and 4.55 ng/mL, respectively. However, in brominated or chlorinated waters, LODs for SEB increased to approximately 2,500 ng/mL. LODs for ricin increased in chlorinated water, but still remained below the suggested health effect level. In brominated water, the LOD for ricin increased to approximately 2,500 ng/mL. In conclusion, the HHAs tested were less effective at detecting ricin and SEB in disinfected water, as currently configured.

4.
Chem Commun (Camb) ; 47(25): 7242-4, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21597641

ABSTRACT

A direct conjugation of organophosphorus acid anhydrolase (OPAA) with CdS quantum dots was prepared via arrested precipitation within the enzyme matrix. The bio-conjugate was found not only to retain enzyme conformational structure but also to retain enzyme activity and be effective at detecting diisopropyl fluorophosphate (DFP) at the micro molar level.


Subject(s)
Aryldialkylphosphatase/metabolism , Cadmium Compounds/chemistry , Cadmium Compounds/chemical synthesis , Quantum Dots , Sulfides/chemistry , Sulfides/chemical synthesis , Spectrum Analysis
5.
Appl Environ Microbiol ; 76(10): 3343-51, 2010 May.
Article in English | MEDLINE | ID: mdl-20305025

ABSTRACT

Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested.


Subject(s)
Bacillus anthracis/drug effects , Chlorine Compounds/pharmacology , Decontamination/methods , Disinfectants/pharmacology , Oxides/pharmacology , Spores, Bacterial/drug effects , Floors and Floorcoverings , Steel , Time Factors , Wood/microbiology
6.
Biochemistry ; 49(3): 547-59, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20000741

ABSTRACT

The organophosphate acid anhydrolase (OPAA) is a member of a class of bimetalloenzymes that hydrolyze a variety of toxic acetylcholinesterase-inhibiting organophosphorus compounds, including fluorine-containing chemical nerve agents. It also belongs to a family of prolidases, with significant activity against various Xaa-Pro dipeptides. Here we report the X-ray structure determination of the native OPAA (58 kDa mass) from Alteromonas sp. strain JD6.5 and its cocrystal with the inhibitor mipafox [N,N'-diisopropyldiamidofluorophosphate (DDFP)], a close analogue of the nerve agent organophosphate substrate diisopropyl fluorophosphate (DFP). The OPAA structure is composed of two domains, amino and carboxy domains, with the latter exhibiting a "pita bread" architecture and harboring the active site with the binuclear Mn(2+) ions. The native OPAA structure revealed unexpectedly the presence of a well-defined nonproteinaceous density in the active site whose identity could not be definitively established but is suggestive of a bound glycolate, which is isosteric with a glycine (Xaa) product. All three glycolate oxygens coordinate the two Mn(2+) atoms. DDFP or more likely its hydrolysis product, N,N'-diisopropyldiamidophosphate (DDP), is present in the cocrystal structure and bound by coordinating the binuclear metals and forming hydrogen bonds and nonpolar interactions with active site residues. An unusual common feature of the binding of the two ligands is the involvement of only one oxygen atom of the glycolate carboxylate and the product DDP tetrahedral phosphate in bridging the two Mn(2+) ions. Both structures provide new understanding of ligand recognition and the prolidase and organophosphorus hydrolase catalytic activities of OPAA.


Subject(s)
Aryldialkylphosphatase/chemistry , Aryldialkylphosphatase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chemical Warfare Agents/metabolism , Dipeptidases/chemistry , Dipeptidases/metabolism , Alteromonas/enzymology , Binding Sites , Catalysis , Catalytic Domain , Chemical Warfare Agents/chemistry , Crystallography, X-Ray , Hydrolysis , Protein Conformation , Structure-Activity Relationship
7.
J Phys Chem B ; 112(16): 5250-6, 2008 Apr 24.
Article in English | MEDLINE | ID: mdl-18373370

ABSTRACT

The secondary structure of the organophosphorus acid anhydrolase (OPAA) Langmuir monolayer in the absence and presence of diisopropylfluorophosphate (DFP) in the subphase was studied by infrared reflection-absorption spectroscopy (IRRAS) and polarization-modulated IRRAS (PM-IRRAS). The results of both the IRRAS and the PM-IRRAS indicated that the alpha-helix and the beta-sheet conformations in OPAA were parallel to the air-water interface at a surface pressure of 0 mN.m-1 in the absence of DFP in the subphase. When the surface pressure increased, the alpha-helix and the beta-sheet conformations became tilted. When DFP was added to the subphase at a concentration of 1.1 x 10(-5) M, the alpha-helix conformation of OPAA was still parallel to the air-water interface, whereas the beta-sheet conformation was perpendicular at 0 mN.m-1. The orientations of both the alpha-helix and the beta-sheet conformations did not change with the increase of surface pressure. The shape of OPAA molecules is supposed to be elliptic, and the long axis of OPAA was parallel to the air-water interface in the absence of DFP in the subphase, whereas the long axis became perpendicular in the presence of DFP. This result explains the decrease of the limiting molecular area of the OPAA Langmuir monolayer when DFP was dissolved in the subphase.


Subject(s)
Aryldialkylphosphatase/chemistry , Aryldialkylphosphatase/metabolism , Molecular Structure , Pressure , Solutions , Spectrophotometry, Infrared , Surface Properties
8.
Biomacromolecules ; 7(10): 2806-10, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17025356

ABSTRACT

The secondary structure of organophosphorus hydrolase (OPH) at the air-water interface was studied using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). The shape and position of the amide I and amide II bands were used to estimate the surface conformation and orientation of OPH. The PM-IRRAS results indicated that the enzyme did not unfold for the range of surface pressure used (0-30 mN/m). At low surface pressures, the signal of amide I was very weak and the intensity was almost the same as amide II. Upon further compression, the PM-IRRAS signal and the ratio of the intensity of amide I and amide II both increase, implying an increased interfacial concentration of the enzyme. From the amide I/amide II ratio and the band position, it was deduced that the enzyme adopts a conformation which gives a higher occupied surface at low surface pressure and rotates to a more vertical orientation at high surface pressures. The compression and decompression of the OPH monolayer indicated that the fingerprint of the secondary structure at the air-water interface was reversible. PM-IRRAS was also used to investigate the pH effect of the subphase on the secondary structure of OPH. The secondary structure of OPH at the air-water interface was well defined when the pH of the subphase was near its isoelectric point (IP, pH 7.6). However, it adopted a different orientation when the subphase pH values were higher or lower than the IP with formation of random coil structure. The hydrolysis of organophosphorus compound paraoxon by OPH was also studied at the air-water interface by PM-IRRAS. The pH effect and the interaction with paraoxon both seem to orientate the enzyme more in the plane of the interface and to produce random coil structure.


Subject(s)
Air , Aryldialkylphosphatase/chemistry , Biotechnology/methods , Paraoxon/chemistry , Water/chemistry , Biocompatible Materials/chemistry , Chemistry, Pharmaceutical/methods , Cholinesterase Inhibitors/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Pressure , Protein Conformation , Protein Structure, Secondary , Pseudomonas/metabolism , Spectrophotometry, Infrared
9.
Anal Chem ; 78(19): 7016-21, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-17007528

ABSTRACT

As a consequence of organophosphorus (OP) toxins posing a threat to human life globally, organophosphorus hydrolase (OPH) has become the enzyme of choice to detoxify such compounds. Organophosphorus hydrolase was covalently immobilized onto a quartz substrate for utilization in paraoxon detection. The substrate was cleaned and modified prior to chemical attachment. Each modification step was monitored by imaging ellipsometry as the thickness increased with each modification step. The chemically attached OPH was labeled with a fluorescent dye (7-isothiocyanato-4-methylcoumarin) for the detection of paraoxon in aqueous solution, ranging from 10(-9) to 10(-5) M. UV-visible spectra were also acquired for the determination of the hydrolysis product of para-oxon, namely p-nitrophenol.


Subject(s)
Aryldialkylphosphatase/chemistry , Enzymes, Immobilized/chemistry , Organophosphorus Compounds/analysis , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...