Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256756

ABSTRACT

Multiple abiotic stresses such as drought, salinity, heat, and cold stress prevailing in natural habitats affect plant growth and development. Different species modify their structural and functional traits to combat these abiotic stresses while growing in stressful environments. Cenchrus species, i.e., Cenchrus pennisetiformis, C. setiger, and C. prieurii are widely distributed grasses found growing all over the world. Samples from natural populations were collected from different ecological regions in the Punjab and Khyber Pakhtoonkhwa that were exposed to aridity, salinity, and cold, while one site was designated as normal control. In the present study, structural and functional modifications of three Cenchrus species under abiotic stresses were evaluated. It was expected that each Cenchrus species may evolve different strategies to cope with multiple abiotic stresses. All Cenchrus species responded differently whether growing in normal environment or stressful conditions. The most remarkable feature for survival in C. pennisetiformis under cold stress was increased inflorescence and increased stem and root lignification. C. prieurii showed better tolerance to saline and cold environments. C. setiger showed better development of leaf sheath anatomical traits. The structural and functional modifications in Cenchrus species such as development of mechanical tissues provided structural support, while dermal and parenchymatous tissues increased water storage capacity and minimized water loss. An increase in the concentration of organic osmolytes and ionic content aids turgor pressure maintenance and ionic content crucial for plant growth and development. It was concluded that structural and functional alterations in all Cenchrus species were very specific and critical for survival under different environmental stresses. The ecological fitness of these species relied on maintenance of growth and biomass production, and the development of mechanical, vascular, dermal and parenchyma tissues under stressful environmental conditions. Moreover, accumulation of beneficial ions (K+ and Ca2+) and organic osmolytes were critical in turgor maintenance, hence survival of Cenchrus spp.

2.
Int J Phytoremediation ; 26(6): 913-927, 2024.
Article in English | MEDLINE | ID: mdl-37985450

ABSTRACT

Salt excretory halophytes are the major sources of phytoremediation of salt-affected soils. Cressa cretica is a widely distributed halophyte in hypersaline lands in the Cholistan Desert. Therefore, identification of key physio-anatomical traits related to phytoremediation in differently adapted C. cretica populations was focused on. Four naturally adapted ecotypes of non-succulent halophyte Cressa cretica L. form hyper-arid and saline desert Cholistan. The selected ecotypes were: Derawar Fort (DWF, ECe 20.8 dS m-1) from least saline site, Traway Wala Toba (TWT, ECe 33.2 dS m-1) and Bailah Wala Dahar (BWD, ECe 45.4 dS m-1) ecotypes were from moderately saline sites, and Pati Sir (PAS, ECe 52.4 dS m-1) was collected from the highly saline site. The natural population of this species was collected and carefully brought to the laboratory for different structural and functional traits. As a result of high salinity, Na+, Cl-, K+, and Ca2+ content significantly increased at root and shoot level. At root level, some distinctive modifications such as increased sclerification in vascular bundles, enlarged vascular bundles, metaxylem vessels, phloem region, and storage parenchyma (cortex) are pivotal for water storage under extreme arid and osmotic condition. At the stem level, enhanced sclerification in outer cortex and vascular bundles, stem cellular area, cortical proportion, metaxylem and phloem area, and at the leaf level, very prominent structural adaptations were thicker and smaller leaves with increased density of salt glands and trichomes at surface, few and large stomata, reduced cortical and mesophyll parenchyma, and narrow xylem vessels and phloem area represent their non-succulent nature. The ecotype collected from hypersaline environments was better adapted regarding growth traits, ion uptake and excretion, succulence, and phytoremediation traits. More importantly, structural and functional traits such as root length and biomass, accumulation of toxic ions along with K+ in root and shoot, accumulation of Ca2+ in shoot and Mg2+ in root, excretion of toxic ions were the highest in this ecotype. In conclusion, all these alterations strongly favor water conservation, which certainly contributes to ecotypes survival under salt-induced physiological drought.


Naturally adapted salt tolerant plants provide exceptional material for exploring adaptive mechanisms they use to confront high salt concentrations. Cressa cretica is a hypersaline hyperarid desert colonizer, which was previously underexplored. In the present study, we focused on the new insight on relationship among anatomical modifications, salt accumulation and excretion and phytoremediation potential of this rare species.


Subject(s)
Alkalies , Soil , Biodegradation, Environmental , Soil/chemistry , Saline Solution , Sodium Chloride , Ions , Salt-Tolerant Plants/chemistry , Salt-Tolerant Plants/physiology , Salinity
3.
PLoS One ; 18(6): e0286736, 2023.
Article in English | MEDLINE | ID: mdl-37285364

ABSTRACT

Plant performance is mainly estimated based on plant architecture, leaf features and internal microstructural changes. Olive (Olea europaea L.) is a drought tolerant, oil yielding, and medium sized woody tree that shows specific structural and functional modifications under changing environment. This study was aimed to know the microstructural alteration involving in growth and yield responses of different Olive cultivars. Eleven cultivars were collected all over the world and were planted at Olive germplasm unit, Barani Agricultural Research Institute, Chakwal (Punjab) Pakistan, during September to November 2017. Plant material was collected to correlate morpho-anatomical traits with yield contributing characteristics. Overall, the studied morphological characters, yield and yield parameters, and root, stem and leaf anatomical features varied highly significantly in all olive cultivars. The most promising cultivar regarding yield was Erlik, in which plant height seed weight and root anatomical characteristics, i.e., epidermal thickness and phloem thickness, stem features like collenchymatous thickness, phloem thickness and metaxylem vessel diameter, and leaf traits like midrib thickness, palisade cell thickness a phloem thickness were the maximum. The second best Hamdi showed the maximum plant height, fruit length, weight and diameter and seed length and weight. It also showed maximum stem phloem thickness, midrib and lamina thicknesses, palisade cell thickness. Fruit yield in the studied olive cultivars can be more closely linked to high proportion of storage parenchyma, broader xylem vessels and phloem proportion, dermal tissue, and high proportion of collenchyma.


Subject(s)
Olea , Olea/chemistry , Fruit , Trees , Phenotype , Seeds
4.
Environ Sci Pollut Res Int ; 30(33): 80693-80712, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37301816

ABSTRACT

Using halophytes for phytoremediation is an environmentally friendly technique, now gaining importance all over the world. Fagonia indica Burm. f. (Indian Fagonia) is primarily distributed in salt-affected lands of the Cholistan Desert and surrounding habitats. Four populations with three replications from salt-affected habitats were collected from natural habitats to evaluate structural and functional adaptation for salinity tolerance and phytoremediation of hypersaline habitats. The populations collected from the highest saline sites Pati Sir (PS) and Ladam Sir (LS) had restricted growth habit, increased accumulation of K+ and Ca2+ along Na+ and Cl-, more excretion of Na+ and Cl-, increased cross-sectional area of root and stem, larger exodermal and endodermal cells in roots, and broad metaxylem area. Sclerification in stem was high in population. Specific modifications in leaves were reduced stomatal area and increased adaxial epidermal cell area. Important traits associated with phytoremediation potential of F. indica populations (Pati Sir and Ladam Sir) were deeper roots and taller plants, increased density of salt glands on leaf surface, and high excretion of Na+. Additionally, higher bio-concentration factor, translocation factor, and dilution factor for Na and Cl- in same Ladam Sir and Pati Sir population were identified as key phytoremediation attributes. The plants of F. indica colonizing high salinities (Pati Sir and Ladam Sir) were, therefore, more efficient in phytoremediation of saline soils as these populations accumulated and/or excrete toxic salts. Density of salt glands remarkably increased in the Pati Sir population collected from the highest salinity. This population accumulated and excreted the highest amount of Na+ and Cl-. The dilution factor of Na+ and Cl- ions was also the highest in this population. Anatomical modifications such as root and stem cross-sectional areas, proportion of storage parenchyma, and broad metaxylem vessels were the maximum in Pati Sir population. These modifications indicate not only better salt tolerance of the Pati Sir population but also better in accumulation and excretion of toxic salts. This population can potentially rehabilitate hypersaline uncultivated lands through green reclamation.


Subject(s)
Salt-Tolerant Plants , Salts , Animals , Salt-Tolerant Plants/metabolism , Biodegradation, Environmental , Ecosystem , Salt Tolerance , Sodium/metabolism , Salinity , Plant Leaves/metabolism
5.
Int J Phytoremediation ; 25(5): 630-645, 2023.
Article in English | MEDLINE | ID: mdl-35862619

ABSTRACT

Micro and macro-morphological features contribute to plants' tolerance to a variety of environmental pollutants. The contribution of such structural modifications in the phytoremediation potential of Diplachne fusca populations collected from five saline habitats were explored when treated with 100 to 400 mM NaCl for 75 days along with control. Structural modifications in the populations from the highest salinity included development of aerenchyma in stem instead of chlorenchyma, absence of excretory hairs in stem, and exceptionally large trichomes on the leaf surface to help excretion of excess salt. Large parenchyma cells provided more space for water and solute storage, while broad metaxylem vessels were linked to better conduction water and nutrients, which ultimately excreted via glandular hairs, microhairs, and vesicular hairs. Broad metaxylem vessels and exceptionally long hairs observed in the populations collected from 52 dS m-1. In conclusion, large stem aerenchyma, exceptionally large trichomes on the leaf surface, and tightly packed outer cortical region in roots with intensive sclerification just inside the epidermis accompanied with salt excretion via glandular hairs, microhairs, and vesicular hairs were the main anatomical modifications involved in the phytoremediation potential of D. fusca in hyper-saline environments.


Morpho-anatomical characteristics of the differently adapted populations of Diplachne fusca has never been reported. In particular, structural variation in their mechanism of adaptation for salinity tolerance was investigated for the first time in current study.


Subject(s)
Poaceae , Salt-Tolerant Plants , Biodegradation, Environmental , Sodium Chloride/chemistry , Water , Saline Solution , Salinity
6.
Life (Basel) ; 12(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35888059

ABSTRACT

The individual application of pure and active compounds such as methionine may help to address water scarcity issues without compromising the yield of wheat. As organic plant growth stimulants, amino acids are popularly used to promote the productivity of crops. However, the influence of the exogenous application of methionine in wheat remains elusive. The present investigation was planned in order to understand the impact of methionine in wheat under drought stress. Two wheat genotypes were allowed to grow with 100% field capacity (FC) up to the three-leaf stage. Twenty-five-day-old seedlings of two wheat genotypes, Galaxy-13 and Johar-16, were subjected to 40% FC, denoted as water deficit-stress (D), along with 100% FC, called control (C), with and without L-methionine (Met; 4 mM) foliar treatment. Water deficit significantly reduced shoot length, shoot fresh and dry weights, seed yield, photosynthetic, gas exchange attributes except for transpiration rate (E), and shoot mineral ions (potassium, calcium, and phosphorus) in both genotypes. A significant increase was recorded in superoxide dismutase (SOD), catalase (CAT), hydrogen peroxide (H2O2), malondialdehyde (MDA), and sodium ions (Na+) due to water deficiency. However, foliar application of Met substantially improved the studied growth, photosynthetic, and gas exchange attributes with water deficit conditions in both genotypes. The activities of SOD, POD, and CAT were further enhanced under stress with Met application. Met improved potassium (K), calcium (Ca2+), and phosphorus (P) content. In a nutshell, the foliar application of Met effectively amended water deficit stress tolerance by reducing MDA and H2O2 content under water deficit conditions in wheat plants. Thus, we are able to deduce a positive association between Met-induced improved growth attributes and drought tolerance.

7.
PLoS One ; 17(6): e0269162, 2022.
Article in English | MEDLINE | ID: mdl-35731737

ABSTRACT

Calcium (Ca) is a macronutrient and works as a modulator to mitigate oxidative stress induced by heavy metals. In this study, we investigated the role of Ca to ameliorate the Cd toxicity in Zea mays L. by modulating the growth, physio-biochemical traits, and cellular antioxidant defense system. Maize genotype Sahiwal-2002 was grown under a controlled glasshouse environment with a day/night temperature of 24 ± 4°C/14 ± 2°C in a complete randomized design with three replications and two Cd levels as (0 and 150 µM) and six regimes of Ca (0, 0.5, 1, 2.5, 5, and 10 mM). Maize seedlings exposed to Cd at 150 µM concentration showed a notable decrease in growth, biomass, anthocyanins, chlorophylls, and antioxidant enzymes activities. A higher level of Cd (150 µM) also caused an upsurge in oxidative damage observed as higher electrolyte leakage (increased membrane permeability), H2O2 production, and MDA accumulation. Supplementation of Ca notably improved growth traits, photosynthetic pigments, cellular antioxidants (APX, POD, and ascorbic acid), anthocyanins, and levels of osmolytes. The significant improvement in the osmolytes (proteins and amino acids), and enzymatic antioxidative defense system enhanced the membrane stability and mitigated the damaging effects of Cd. The present results concluded that exogenously applied Ca potentially improve growth by regulating antioxidants and enabling maize plants to withstand the Cd toxicity.


Subject(s)
Antioxidants , Zea mays , Anthocyanins/metabolism , Anthocyanins/pharmacology , Antioxidants/metabolism , Cadmium/metabolism , Calcium/metabolism , Dietary Supplements , Hydrogen Peroxide/metabolism , Oxidative Stress , Up-Regulation , Zea mays/metabolism
8.
Environ Sci Pollut Res Int ; 29(42): 64077-64095, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35469386

ABSTRACT

The role of ionic excretions and hyper-accumulation of salts through alterations of structural and functional traits in five populations of Suaeda vera Forssk. ex J.F. Gmel., a halophytic salt-indicator species of saline environments, was explored. Differently adapted populations of S. vera exhibited specific structural and functional responses for the survival in hyper-saline conditions. Better growth in population from moderately saline habitat (25-30 dS m-1) was linked to high shoot and root K+ and increased ion selectivity (K+/Na+ and Ca2+/Na+). Increased excretion of Na+ and Cl- with increasing salinity level was a critical mechanism in maintaining ionic balance. Drastic differences were observed for anatomical characteristics in populations inhabiting differentially salt-affected lands. The plants from highly saline sites were characterized by narrow metaxylem vessels, low proportion of cortical parenchyma, and reduced phloem area leading to stunted growth. Contrariwise, root area significantly increased due to high proportion of sclerified xylem tissue, which was associated with easier conduction of solutes and protection of roots from collapsing. Root sclerification particularly at the highest salinity regime was a key factor in the survival of this species in salt-affected compact soils. Leaf anatomical characteristics showed reduction with increasing salinity, but the leaf thickness responded otherwise. This contributed to increased leaf succulence because of high proportion of storage parenchyma in populations colonizing hyper-saline habitats. It was concluded that moderate salinity conditions were more suitable for the growth of S. vera, though some populations of this species were able to tolerate much higher salinity levels.


Subject(s)
Chenopodiaceae , Salinity , Salt-Tolerant Plants/chemistry , Salts , Sodium , Sodium Chloride , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...