Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 230: 104918, 2020 08.
Article in English | MEDLINE | ID: mdl-32417099

ABSTRACT

The monolayer behavior of a l-DPPC derivative with a single fluorination in one of its terminal methyl groups (F-DPPC) at air-water interface was investigated by epifluorescence microscopy and infrared reflection absorption spectroscopy (IRRAS). Epifluorescence microscopy was utilized to study the shape and morphology of liquid-condensed (LC) domains observed upon compression of the film. IRRAS was employed for the determination of chain order and orientation. The shapes of LC-domains in a monolayer of F-DPPC are more dependent on the rate of compression than those of DPPC. The LC domains of F-DPPC display pronounced fractal growth patterns depending on the compression speed. The evolution of LC domain occurs under dominating electrostatic dipolar forces in F-DPPC. IRRAS measurements with the analysis of the frequency of the methylene stretching vibrations as a function of film compression show that the acyl chains in an F-DPPC monolayer in the LE-phase are more disordered than those in a DPPC film. The reason for the higher chain disorder in LE phase F-DPPC monolayers is a back folding of the fluorinated sn-2 chain terminus towards the air-water interface leading to larger molecular area requirement. Angular dependent IRRA spectra of monolayers at a surface pressure of 30 mN m-1 show that in the LC phase DPPC and F-DPPC exhibit a similar tilt of the acyl chains of ca. 28-30 ° relative to the surface normal. F-DPPC is ideally miscible with l-DPPC-d62 having the same chirality, as indicated by epifluorescence images and by IRRAS. However, the LC domains in an equimolar mixture of d-DPPC and F-DPPC having opposite chirality show multi-lobed complex domain patterns indicating chiral phase separation within LC domains.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Microscopy, Fluorescence , Phosphatidylcholines/chemistry , Spectrophotometry, Infrared , Halogenation , Kinetics , Mechanical Phenomena , Stereoisomerism
2.
Polymers (Basel) ; 9(11)2017 Oct 25.
Article in English | MEDLINE | ID: mdl-30965858

ABSTRACT

We studied the interaction of amphiphilic and triphilic polymers with monolayers prepared from F-DPPC (1-palmitoyl-2-(16-fluoropalmitoyl)-sn-glycero-3-phosphocholine), a phospholipid with a single fluorine atom at the terminus of the sn-2 chain, an analogue of dipalmitoyl-phosphatidylcholine (DPPC). The amphiphilic block copolymers contained a hydrophobic poly(propylene oxide) block flanked by hydrophilic poly(glycerol monomethacrylate) blocks (GP). F-GP was derived from GP by capping both termini with perfluoro-n-nonyl segments. We first studied the adsorption of GP and F-GP to lipid monolayers of F-DPPC. F-GP was inserted into the monolayer up to a surface pressure Π of 42.4 mN m-1, much higher than GP (32.5 mN m-1). We then studied isotherms of lipid-polymer mixtures co-spread at the air-water interface. With increasing polymer content in the mixture a continuous shift of the onset of the liquid-expanded (LE) to liquid-condensed (LC) transition towards higher molecular and higher area per lipid molecule was observed. F-GP had a larger effect than GP indicating that it needed more space. At a Π-value of 32 mN m-1, GP was excluded from the mixed monolayer, whereas F-GP stayed in F-DPPC monolayers up to 42 mN m-1. F-GP is thus more stably anchored in the monolayer up to higher surface pressures. Images of mixed monolayers were acquired using different fluorescent probes and showed the presence of perfluorinated segments of F-GP at LE-LC domain boundaries.

3.
Soft Matter ; 11(30): 6106-17, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26133098

ABSTRACT

Cholesterol (Ch) linked to a linear-hyperbranched block copolymer composed of poly(ethylene glycol) (PEG) and poly(glycerol) (hbPG) was investigated for its membrane anchoring properties. Two polyether-based linear-hyperbranched block copolymers with and without a covalently attached rhodamine fluorescence label (Rho) were employed (Ch-PEG30-b-hbPG23 and Ch-PEG30-b-hbPG17-Rho). Compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with the respective polymers were measured on the Langmuir trough and the morphology development of the liquid-condensed (LC) domains was studied by epi-fluorescence microscopy. LC domains were strongly deformed due to the localization of the polymers at the domain interface, indicating a line activity for both block copolymers. Simultaneously, it was observed that the presence of the fluorescence label significantly influences the domain morphology, the rhodamine labelled polymer showing higher line activity. Adsorption isotherms of the polymers to the water surface or to monolayers of DPPC and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), respectively, were collected. Again the rhodamine labelled polymer showed higher surface activity and a higher affinity for insertion into lipid monolayers, which was negligibly affected when the sub-phase was changed to aqueous sodium chloride solution or phosphate buffer. Calorimetric investigations in bulk confirmed the results found using tensiometry. Confocal laser scanning microscopy (CLSM) of giant unilamellar vesicles (GUVs) also confirmed the polymers' fast adsorption to and insertion into phospholipid membranes.


Subject(s)
Cholesterol/chemistry , Phospholipids/chemistry , Polymers/chemistry , Unilamellar Liposomes/chemistry , Glycerylphosphorylcholine/analogs & derivatives , Lactic Acid/chemistry , Lipid Bilayers/chemistry , Microscopy, Fluorescence , Phosphatidylcholines , Polyesters , Polyethylene Glycols/chemistry , Rhodamines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...