Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Biochim Biophys Acta ; 1851(6): 898-910, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25728392

ABSTRACT

Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated lipid kinases that phosphorylate PtdIns5P to generate PtdIns(4,5)P2. There are three isoforms of PIP4Ks: PIP4K2A, 2B and 2C, which localise to different subcellular compartments with the PIP4K2B isoform being localised predominantly in the nucleus. Suppression of PIP4K expression selectively prevents tumour cell growth in vitro and prevents tumour development in mice that have lost the tumour suppressor p53. p53 is lost or mutated in over 70% of all human tumours. These studies suggest that inhibition of PIP4K signalling constitutes a novel anti-cancer therapeutic target. In this review we will discuss the role of PIP4K in tumour suppression and speculate on how PIP4K modulates nuclear phosphoinositides (PPIns) and how this might impact on nuclear functions to regulate cell growth. This article is part of a Special Issue entitled Phosphoinositides.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Cell Nucleus/enzymology , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/enzymology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , 1-Phosphatidylinositol 4-Kinase/genetics , Animals , Antineoplastic Agents/pharmacology , Cytoplasm/enzymology , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
3.
FEBS J ; 280(24): 6295-310, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24112514

ABSTRACT

Polyphosphoinositides (PPIn) are important lipid molecules whose levels are de-regulated in human diseases such as cancer, neurodegenerative disorders and metabolic syndromes. PPIn are synthesized and degraded by an array of kinases, phosphatases and lipases which are localized to various subcellular compartments and are subject to regulation in response to both extra- and intracellular cues. Changes in the activities of enzymes that metabolize PPIn lead to changes in the profiles of PPIn in various subcellular compartments. Understanding how subcellular PPIn are regulated and how they affect downstream signaling is critical to understanding their roles in human diseases. PPIn are present in the nucleus, and their levels are changed in response to various stimuli, suggesting that they may serve to regulate specific nuclear functions. However, the lack of nuclear downstream targets has hindered the definition of which pathways nuclear PPIn affect. Over recent years, targeted and global proteomic studies have identified a plethora of potential PPIn-interacting proteins involved in many aspects of transcription, chromatin remodelling and mRNA maturation, suggesting that PPIn signalling within the nucleus represents a largely unexplored novel layer of complexity in the regulation of nuclear functions.


Subject(s)
Cell Nucleus/metabolism , Phosphatidylinositols/metabolism , Signal Transduction , Animals , Cell Nucleus/genetics , Humans
4.
Biochem J ; 455(3): 347-58, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23909401

ABSTRACT

The spatial and temporal regulation of the second messenger PtdIns(4,5)P2 has been shown to be crucial for regulating numerous processes in the cytoplasm and in the nucleus. Three isoforms of PIP5K1 (phosphatidylinositol 4-phosphate 5-kinase), A, B and C, are responsible for the regulation of the major pools of cellular PtdIns(4,5)P2. PIP5K1B is negatively regulated in response to oxidative stress although it remains unclear which pathways regulate its activity. In the present study, we have investigated the regulation of PIP5K1B by protein phosphorylation. Using MS analysis, we identified 12 phosphorylation sites on PIP5K1B. We developed a phospho-specific antibody against Ser413 and showed that its phosphorylation was increased in response to treatment of cells with phorbol ester, H2O2 or energy restriction. Using inhibitors, we define a stress-dependent pathway that requires the activity of the cellular energy sensor AMPK (AMP-activated protein kinase) and PKC (protein kinase C) to regulate Ser413 phosphorylation. Furthermore, we demonstrate that PKC can directly phosphorylate Ser413 in vitro. Mutation of Ser413 to aspartate to mimic serine phosphorylation decreased both PIP5K1B activity in vitro and PtdIns(4,5)P2 synthesis in vivo. Our studies show that collaboration between AMPK and PKC dictates the extent of Ser413 phosphorylation on PIP5K1B and regulates PtdIns(4,5)P2 synthesis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Energy Metabolism , Oxidative Stress , Serine/genetics , HEK293 Cells , HeLa Cells , Humans , Hydrogen Peroxide/metabolism , Mutation , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Serine/metabolism
5.
Mol Cell Biol ; 32(3): 704-16, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22124156

ABSTRACT

SIRT1 is an NAD-dependent deacetylase and epigenetic regulator essential for normal mammalian development and homeostasis. Here we describe a human SIRT1 splice variant, designated SIRT1-Δ2/9, in which the deacetylase coding sequence is lost due to splicing between exons 2 and 9. This work aimed to determine if SIRT1-Δ2/9 is a novel functional product of the SIRT1 gene. Endogenous SIRT1-Δ2/9 protein was identified in human cell lysate by immunoblotting and splice variant-specific RNA interference (RNAi). SIRT1-Δ2/9 mRNA is bound by CUGBP2, which downregulates its translation. Using pulldown assays, we demonstrate that SIRT1-Δ2/9 binds p53 protein. SIRT1-Δ2/9 maintains basal p53 protein levels and supports p53 function in response to DNA damage, as evidenced by RNAi-mediated depletion of SIRT1-Δ2/9 prior to damage. In turn, basal p53 downregulates SIRT1-Δ2/9 RNA levels, while stress-activated p53 eliminates SIRT1-Δ2/9. Loss of wild-type (wt) p53 has been correlated with overexpression of SIRT1-Δ2/9 in a range of human cancers. Exogenous SIRT1-Δ2/9 protein associates with specific promoters in chromatin and can regulate cancer-related gene expression, as evidenced by chromatin immunoprecipitation analysis and RNAi/genomic array data. SIRT1 is of major therapeutic importance, and potential therapeutic drugs are screened against SIRT1 deacetylase activity. Our discovery of SIRT1-Δ2/9 identifies a new, deacetylase-independent therapeutic target for SIRT1-related diseases, including cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Sirtuin 1/genetics , Tumor Suppressor Protein p53/metabolism , Alternative Splicing , Cell Line, Tumor , DNA Damage , Gene Deletion , Humans , Neoplasms/metabolism , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/metabolism , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/genetics
7.
PLoS One ; 5(10): e13502, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20975832

ABSTRACT

BACKGROUND: The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-ΔExon8. We show that SIRT1-ΔExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-ΔExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1-ΔExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. CONCLUSIONS/SIGNIFICANCE: We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed between SIRT1 isoforms, with important implications for SIRT1 functional studies and the current search for SIRT1-activating therapeutics to combat age-related decline.


Subject(s)
Alternative Splicing , Sirtuin 1/physiology , Tumor Suppressor Protein p53/physiology , Acetylation , Animals , Exons , Humans , Mice , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 1/genetics
8.
Nucleic Acids Res ; 35(2): 664-77, 2007.
Article in English | MEDLINE | ID: mdl-17179180

ABSTRACT

The genes for mitoribosomal protein S12 (Mrps12) and mitochondrial seryl-tRNA ligase (Sarsm and Sars2) are oppositely transcribed from a conserved promoter region of <200 bp in both human and mouse. Using a dual reporter vector we identified an array of 4 CCAAT box elements required for efficient transcription of the two genes in cultured mouse 3T3 cells, and for enforcing directionality in favour of Mrps12. Electrophoretic mobility shift assay (EMSA) and in vivo footprinting confirmed the importance of these promoter elements as sites of protein-binding, and EMSA supershift and chromatin immunoprecipitation (ChIP) assays identified NF-Y as the key transcription factor involved, revealing a common pattern of protein-DNA interactions in all tissues tested (liver, brain, heart, kidney and 3T3 cells). The inherently bidirectional activity of NF-Y makes it an especially suitable factor to govern promoters of this class, whose expression is linked to cell proliferation.


Subject(s)
CCAAT-Binding Factor/metabolism , Gene Expression Regulation , Genes, Mitochondrial , Mitochondrial Proteins/genetics , Promoter Regions, Genetic , Ribosomal Proteins/genetics , Serine-tRNA Ligase/genetics , Animals , Binding Sites , DNA, Intergenic/chemistry , Electrophoretic Mobility Shift Assay , Genes, Reporter , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , NIH 3T3 Cells , Protein Biosynthesis , Ribosomal Proteins/metabolism , Serine-tRNA Ligase/metabolism
9.
Eur J Hum Genet ; 13(1): 26-33, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15292920

ABSTRACT

Mitochondrial mutations have previously been reported anecdotally in families with maternally inherited, nonsyndromic hearing impairment. To ascertain the contribution of mitochondrial mutations to postlingual but early-onset, nonsyndromic hearing impairment, we screened patients collected from within two different populations (southern Italy and UK) for previously reported mtDNA mutations associated with hearing disorders. Primer extension (SNP analysis) was used to screen for specific mutations, revealing cases of heteroplasmy and its extent. The most frequently implicated tRNA genes, Leu(UUR) and Ser(UCN), were also sequenced in all Italian patients. All tRNA genes were sequenced in those UK patients showing the clearest likelihood of maternal inheritance. Causative mtDNA mutations were found in approximately 5% of patients in both populations, representing almost 10% of cases that were clearly familial. Age of onset, where known, was generally before adulthood, and hearing loss was typically progressive. Haplogroup analysis revealed a possible excess of haplogroup cluster HV in the patients, compared with population controls, but of borderline statistical significance. In contrast, we did not find any of the previously reported mtDNA mutations, nor a significant deviation from haplogroup cluster frequencies typical of the control population, in patients with late adult-onset hearing loss (age-related hearing impairment) from the UK or Finland.


Subject(s)
DNA, Mitochondrial/genetics , Hearing Loss/genetics , Language Disorders/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Age of Onset , Aged , Aged, 80 and over , DNA Mutational Analysis , Female , Finland , Haplotypes/genetics , Hearing Loss/epidemiology , Humans , Italy , Language Disorders/epidemiology , Male , Middle Aged , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...