Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 113: 103390, 2019 10.
Article in English | MEDLINE | ID: mdl-31450056

ABSTRACT

Metabolic engineering is defined as improving the cellular activities of an organism by manipulating the metabolic, signal or regulatory network. In silico reaction knockout simulation is one of the techniques applied to analyse the effects of genetic perturbations on metabolite production. Many methods consider growth coupling as the objective function, whereby it searches for mutants that maximise the growth and production rate. However, the final goal is to increase the production rate. Furthermore, they produce one single solution, though in reality, cells do not focus on one objective and they need to consider various different competing objectives. In this work, a method, termed ndsDSAFBA (non-dominated sorting Differential Search Algorithm and Flux Balance Analysis), has been developed to find the reaction knockouts involved in maximising the production rate and growth rate of the mutant, by incorporating Pareto dominance concepts. The proposed ndsDSAFBA method was validated using three genome-scale metabolic models. We obtained a set of non-dominated solutions, with each solution representing a different mutant strain. The results obtained were compared with the single objective optimisation (SOO) and multi-objective optimisation (MOO) methods. The results demonstrate that ndsDSAFBA is better than the other methods in terms of production rate and growth rate.


Subject(s)
Algorithms , Computer Simulation , Metabolic Engineering , Models, Biological
2.
Biomed Res Int ; 2014: 213656, 2014.
Article in English | MEDLINE | ID: mdl-25250315

ABSTRACT

When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method.


Subject(s)
Algorithms , Data Interpretation, Statistical , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Pattern Recognition, Automated/methods , Software , Software Design
SELECTION OF CITATIONS
SEARCH DETAIL
...