Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
AIMS Public Health ; 11(1): 58-109, 2024.
Article in English | MEDLINE | ID: mdl-38617415

ABSTRACT

In recent years, machine learning (ML) and deep learning (DL) have been the leading approaches to solving various challenges, such as disease predictions, drug discovery, medical image analysis, etc., in intelligent healthcare applications. Further, given the current progress in the fields of ML and DL, there exists the promising potential for both to provide support in the realm of healthcare. This study offered an exhaustive survey on ML and DL for the healthcare system, concentrating on vital state of the art features, integration benefits, applications, prospects and future guidelines. To conduct the research, we found the most prominent journal and conference databases using distinct keywords to discover scholarly consequences. First, we furnished the most current along with cutting-edge progress in ML-DL-based analysis in smart healthcare in a compendious manner. Next, we integrated the advancement of various services for ML and DL, including ML-healthcare, DL-healthcare, and ML-DL-healthcare. We then offered ML and DL-based applications in the healthcare industry. Eventually, we emphasized the research disputes and recommendations for further studies based on our observations.

2.
Ecotoxicol Environ Saf ; 266: 115572, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37837695

ABSTRACT

With urbanization and increasing consumption, there is a growing need to prioritize sustainable development across various industries. Particularly, sustainable development is hindered by air pollution, which poses a threat to both living organisms and the environment. The emission of combustion gases containing particulate matter (PM 2.5) during human and social activities is a major cause of air pollution. To mitigate health risks, it is crucial to have accurate and reliable methods for forecasting PM 2.5 levels. In this study, we propose a novel approach that combines support vector machine (SVM) and long short-term memory (LSTM) with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to forecast PM 2.5 concentrations. The methodology involves extracting Intrinsic mode function (IMF) components through CEEMDAN and subsequently applying different regression models (SVM and LSTM) to forecast each component. The Naive Evolution algorithm is employed to determine the optimal parameters for combining CEEMDAN, SVM, and LSTM. Daily PM 2.5 concentrations in Kaohsiung, Taiwan from 2019 to 2021 were collected to train models and evaluate their performance. The performance of the proposed model is evaluated using metrics such as mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and coefficient of determination (R2) for each district. Overall, our proposed model demonstrates superior performance in terms of MAE (1.858), MSE (7.2449), RMSE (2.6682), and (0.9169) values compared to other methods for 1-day ahead PM 2.5 forecasting. Furthermore, our proposed model also achieves the best performance in forecasting PM 2.5 for 3- and 7-day ahead predictions.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Support Vector Machine , Particulate Matter/analysis , Air Pollution/analysis , Algorithms , Forecasting
3.
ACS Omega ; 8(31): 28036-28051, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576653

ABSTRACT

In powder metallurgy materials, sintered density in Cu-Al alloy plays a critical role in detecting mechanical properties. Experimental measurement of this property is costly and time-consuming. In this study, adaptive boosting decision tree, support vector regression, k-nearest neighbors, extreme gradient boosting, and four multilayer perceptron (MLP) models tuned by resilient backpropagation, Levenberg-Marquardt (LM), scaled conjugate gradient, and Bayesian regularization were employed for predicting powder densification through sintering. Yield strength, Young's modulus, volume variation caused by the phase transformation, hardness, liquid volume, liquidus temperature, the solubility ratio among the liquid phase and the solid phase, sintered temperature, solidus temperature, sintered atmosphere, holding time, compaction pressure, particle size, and specific shape factor were regarded as the input parameters of the suggested models. The cross plot, error distribution curve, and cumulative frequency diagram as graphical tools and average percent relative error (APRE), average absolute percent relative error (AAPRE), root mean square error (RMSE), standard deviation (SD), and coefficient of correlation (R) as the statistical evaluations were utilized to estimate the models' accuracy. All of the developed models were compared with preexisting approaches, and the results exhibited that the developed models in the present work are more precise and valid than the existing ones. The designed MLP-LM model was found to be the most precise approach with AAPRE = 1.292%, APRE = -0.032%, SD = 0.020, RMSE = 0.016, and R = 0.989. Lately, outlier detection was applied performing the leverage technique to detect the suspected data points. The outlier detection discovered that few points are located out of the applicability domain of the proposed MLP-LM model.

4.
Front Artif Intell ; 6: 1181812, 2023.
Article in English | MEDLINE | ID: mdl-37251274

ABSTRACT

Precise detection and localization of the Endotracheal tube (ETT) is essential for patients receiving chest radiographs. A robust deep learning model based on U-Net++ architecture is presented for accurate segmentation and localization of the ETT. Different types of loss functions related to distribution and region-based loss functions are evaluated in this paper. Then, various integrations of distribution and region-based loss functions (compound loss function) have been applied to obtain the best intersection over union (IOU) for ETT segmentation. The main purpose of the presented study is to maximize IOU for ETT segmentation, and also minimize the error range that needs to be considered during calculation of distance between the real and predicted ETT by obtaining the best integration of the distribution and region loss functions (compound loss function) for training the U-Net++ model. We analyzed the performance of our model using chest radiograph from the Dalin Tzu Chi Hospital in Taiwan. The results of applying the integration of distribution-based and region-based loss functions on the Dalin Tzu Chi Hospital dataset show enhanced segmentation performance compared to other single loss functions. Moreover, according to the obtained results, the combination of Matthews Correlation Coefficient (MCC) and Tversky loss functions, which is a hybrid loss function, has shown the best performance on ETT segmentation based on its ground truth with an IOU value of 0.8683.

5.
Big Data ; 11(5): 339-354, 2023 10.
Article in English | MEDLINE | ID: mdl-35076283

ABSTRACT

The cloud network is rapidly growing due to a massive increase in interconnected devices and the emergence of different technologies such as the Internet of things, fog computing, and artificial intelligence. In response, cloud computing needs reliable dealings among the service providers, brokers, and consumers. The existing cloud monitoring frameworks such as Amazon Cloud Watch, Paraleap Azure Watch, and Rack Space Cloud Kick work under the control of service providers. They work fine; however, this may create dissatisfaction among customers over Service Level Agreement (SLA) violations. Customers' dissatisfaction may drastically reduce the businesses of service providers. To cope with the earlier mentioned issue and get in line with cloud philosophy, Monitoring as a Service (MaaS), completely independent in nature, is needed for observing and regulating the cloud businesses. However, the existing MaaS frameworks do not address the comprehensive SLA for customer satisfaction and penalties management. This article proposes a reliable framework for monitoring the provider's services by adopting third-party monitoring services with clearcut SLA and penalties management. Since this framework monitors SLA as a cloud monitoring service, it is named as SLA-MaaS. On violations, it penalizes those who are found in breach of terms and condition enlisted in SLA. Simulation results confirmed that the proposed framework adequately satisfies the customers (as well as service providers). This helps in developing a trustworthy relationship among cloud partners and increases customer attention and retention.


Subject(s)
Artificial Intelligence , Cloud Computing , Computer Simulation , Internet , Commerce
6.
Comput Biol Med ; 151(Pt A): 106266, 2022 12.
Article in English | MEDLINE | ID: mdl-36395591

ABSTRACT

In this paper, a Covid-19 dynamical transmission model of a coupled non-linear fractional differential equation in the Atangana-Baleanu Caputo sense is proposed. The basic dynamical transmission features of the proposed system are briefly discussed. The qualitative as well as quantitative results on the existence and uniqueness of the solutions are evaluated through the fixed point theorem. The Ulam-Hyers stability analysis of the suggested system is established. The two-step Adams-Bashforth-Moulton (ABM) numerical method is employed to find its numerical solution. The numerical simulation is performed to accesses the impact of various biological parameters on the dynamics of Covid-19 disease.


Subject(s)
COVID-19 , Quarantine , Humans , Computer Simulation
7.
Comput Struct Biotechnol J ; 20: 4733-4745, 2022.
Article in English | MEDLINE | ID: mdl-36147663

ABSTRACT

Detection and Classification of a brain tumor is an important step to better understanding its mechanism. Magnetic Reasoning Imaging (MRI) is an experimental medical imaging technique that helps the radiologist find the tumor region. However, it is a time taking process and requires expertise to test the MRI images, manually. Nowadays, the advancement of Computer-assisted Diagnosis (CAD), machine learning, and deep learning in specific allow the radiologist to more reliably identify brain tumors. The traditional machine learning methods used to tackle this problem require a handcrafted feature for classification purposes. Whereas deep learning methods can be designed in a way to not require any handcrafted feature extraction while achieving accurate classification results. This paper proposes two deep learning models to identify both binary (normal and abnormal) and multiclass (meningioma, glioma, and pituitary) brain tumors. We use two publicly available datasets that include 3064 and 152 MRI images, respectively. To build our models, we first apply a 23-layers convolution neural network (CNN) to the first dataset since there is a large number of MRI images for the training purpose. However, when dealing with limited volumes of data, which is the case in the second dataset, our proposed "23-layers CNN" architecture faces overfitting problem. To address this issue, we use transfer learning and combine VGG16 architecture along with the reflection of our proposed "23 layers CNN" architecture. Finally, we compare our proposed models with those reported in the literature. Our experimental results indicate that our models achieve up to 97.8% and 100% classification accuracy for our employed datasets, respectively, exceeding all other state-of-the-art models. Our proposed models, employed datasets, and all the source codes are publicly available at: (https://github.com/saikat15010/Brain-Tumor-Detection).

8.
Cluster Comput ; : 1-41, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35996680

ABSTRACT

Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare field. Traditionally, the healthcare system works based on centralized agents sharing their raw data. Therefore, huge vulnerabilities and challenges are still existing in this system. However, integrating with AI, the system would be multiple agent collaborators who are capable of communicating with their desired host efficiently. Again, FL is another interesting feature, which works decentralized manner; it maintains the communication based on a model in the preferred system without transferring the raw data. The combination of FL, AI, and XAI techniques can be capable of minimizing several limitations and challenges in the healthcare system. This paper presents a complete analysis of FL using AI for smart healthcare applications. Initially, we discuss contemporary concepts of emerging technologies such as FL, AI, XAI, and the healthcare system. We integrate and classify the FL-AI with healthcare technologies in different domains. Further, we address the existing problems, including security, privacy, stability, and reliability in the healthcare field. In addition, we guide the readers to solving strategies of healthcare using FL and AI. Finally, we address extensive research areas as well as future potential prospects regarding FL-based AI research in the healthcare management system.

9.
Front Public Health ; 10: 869238, 2022.
Article in English | MEDLINE | ID: mdl-35812486

ABSTRACT

Early diagnosis, prioritization, screening, clustering, and tracking of patients with COVID-19, and production of drugs and vaccines are some of the applications that have made it necessary to use a new style of technology to involve, manage, and deal with this epidemic. Strategies backed by artificial intelligence (A.I.) and the Internet of Things (IoT) have been undeniably effective to understand how the virus works and prevent it from spreading. Accordingly, the main aim of this survey is to critically review the ML, IoT, and the integration of IoT and ML-based techniques in the applications related to COVID-19, from the diagnosis of the disease to the prediction of its outbreak. According to the main findings, IoT provided a prompt and efficient approach to tracking the disease spread. On the other hand, most of the studies developed by ML-based techniques aimed at the detection and handling of challenges associated with the COVID-19 pandemic. Among different approaches, Convolutional Neural Network (CNN), Support Vector Machine, Genetic CNN, and pre-trained CNN, followed by ResNet have demonstrated the best performances compared to other methods.


Subject(s)
COVID-19 , Internet of Things , Machine Learning , Artificial Intelligence , COVID-19/epidemiology , Humans , Neural Networks, Computer , Pandemics/prevention & control , Support Vector Machine
10.
Front Public Health ; 10: 894920, 2022.
Article in English | MEDLINE | ID: mdl-35795700

ABSTRACT

Detection of malignant lung nodules from Computed Tomography (CT) images is a significant task for radiologists. But, it is time-consuming in nature. Despite numerous breakthroughs in studies on the application of deep learning models for the identification of lung cancer, researchers and doctors still face challenges when trying to deploy the model in clinical settings to achieve improved accuracy and sensitivity on huge datasets. In most situations, deep convolutional neural networks are used for detecting the region of the main nodule of the lung exclusive of considering the neighboring tissues of the nodule. Although the accuracy achieved through CNN is good enough but this models performance degrades when there are variations in image characteristics like: rotation, tiling, and other abnormal image orientations. CNN does not store relative spatial relationships among features in scanned images. As CT scans have high spatial resolution and are sensitive to misalignments during the scanning process, there is a requirement of a technique which helps in considering spatial information of image features also. In this paper, a hybrid model named VCNet is proposed by combining the features of VGG-16 and capsule network (CapsNet). VGG-16 model is used for object recognition and classification. CapsNet is used to address the shortcomings of convolutional neural networks for image rotation, tiling, and other abnormal image orientations. The performance of VCNeT is verified on the Lung Image Database Consortium (LIDC) image collection dataset. It achieves higher testing accuracy of 99.49% which is significantly better than MobileNet, Xception, and VGG-16 that has achieved an accuracy of 98, 97.97, and 96.95%, respectively. Therefore, the proposed hybrid VCNet framework can be used for the clinical purpose for nodule detection in lung carcinoma detection.


Subject(s)
Carcinoma , Deep Learning , Lung Neoplasms , Humans , Lung , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed
11.
Front Public Health ; 10: 879418, 2022.
Article in English | MEDLINE | ID: mdl-35712286

ABSTRACT

Age estimation in dental radiographs Orthopantomography (OPG) is a medical imaging technique that physicians and pathologists utilize for disease identification and legal matters. For example, for estimating post-mortem interval, detecting child abuse, drug trafficking, and identifying an unknown body. Recent development in automated image processing models improved the age estimation's limited precision to an approximate range of +/- 1 year. While this estimation is often accepted as accurate measurement, age estimation should be as precise as possible in most serious matters, such as homicide. Current age estimation techniques are highly dependent on manual and time-consuming image processing. Age estimation is often a time-sensitive matter in which the image processing time is vital. Recent development in Machine learning-based data processing methods has decreased the imaging time processing; however, the accuracy of these techniques remains to be further improved. We proposed an ensemble method of image classifiers to enhance the accuracy of age estimation using OPGs from 1 year to a couple of months (1-3-6). This hybrid model is based on convolutional neural networks (CNN) and K nearest neighbors (KNN). The hybrid (HCNN-KNN) model was used to investigate 1,922 panoramic dental radiographs of patients aged 15 to 23. These OPGs were obtained from the various teaching institutes and private dental clinics in Malaysia. To minimize the chance of overfitting in our model, we used the principal component analysis (PCA) algorithm and eliminated the features with high correlation. To further enhance the performance of our hybrid model, we performed systematic image pre-processing. We applied a series of classifications to train our model. We have successfully demonstrated that combining these innovative approaches has improved the classification and segmentation and thus the age-estimation outcome of the model. Our findings suggest that our innovative model, for the first time, to the best of our knowledge, successfully estimated the age in classified studies of 1 year old, 6 months, 3 months and 1-month-old cases with accuracies of 99.98, 99.96, 99.87, and 98.78 respectively.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Algorithms , Child , Cluster Analysis , Humans , Image Processing, Computer-Assisted/methods , Infant , Radiography, Panoramic
12.
Front Public Health ; 10: 769692, 2022.
Article in English | MEDLINE | ID: mdl-35747775

ABSTRACT

One of the most common causes of death from cancer for both women and men is lung cancer. Lung nodules are critical for the screening of cancer and early recognition permits treatment and enhances the rate of rehabilitation in patients. Although a lot of work is being done in this area, an increase in accuracy is still required to swell patient persistence rate. However, traditional systems do not segment cancer cells of different forms accurately and no system attained greater reliability. An effective screening procedure is proposed in this work to not only identify lung cancer lesions rapidly but to increase accuracy. In this procedure, Otsu thresholding segmentation is utilized to accomplish perfect isolation of the selected area, and the cuckoo search algorithm is utilized to define the best characteristics for partitioning cancer nodules. By using a local binary pattern, the relevant features of the lesion are retrieved. The CNN classifier is designed to spot whether a lung lesion is malicious or non-malicious based on the retrieved features. The proposed framework achieves an accuracy of 96.97% percent. The recommended study reveals that accuracy is improved, and the results are compiled using Particle swarm optimization and genetic algorithms.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Algorithms , Female , Humans , Lung Neoplasms/diagnostic imaging , Neural Networks, Computer , Reproducibility of Results , Tomography, X-Ray Computed/methods
13.
Front Oncol ; 12: 834028, 2022.
Article in English | MEDLINE | ID: mdl-35769710

ABSTRACT

Breast cancer is the most menacing cancer among all types of cancer in women around the globe. Early diagnosis is the only way to increase the treatment options which then decreases the death rate and increases the chance of survival in patients. However, it is a challenging task to differentiate abnormal breast tissues from normal tissues because of their structure and unclear boundaries. Therefore, early and accurate diagnosis and classification of breast lesions into malignant or benign lesions is an active domain of research. Over the decade, numerous artificial neural network (ANN)-based techniques were adopted in order to diagnose and classify breast cancer due to the unique characteristics of learning key features from complex data via a training process. However, these schemes have limitations like slow convergence and longer training time. To address the above mentioned issues, this paper employs a meta-heuristic algorithm for tuning the parameters of the neural network. The main novelty of this work is the computer-aided diagnosis scheme for detecting abnormalities in breast ultrasound images by integrating a wavelet neural network (WNN) and the grey wolf optimization (GWO) algorithm. Here, breast ultrasound (US) images are preprocessed with a sigmoid filter followed by interference-based despeckling and then by anisotropic diffusion. The automatic segmentation algorithm is adopted to extract the region of interest, and subsequently morphological and texture features are computed. Finally, the GWO-tuned WNN is exploited to accomplish the classification task. The classification performance of the proposed scheme is validated on 346 ultrasound images. Efficiency of the proposed methodology is evaluated by computing the confusion matrix and receiver operating characteristic (ROC) curve. Numerical analysis revealed that the proposed work can yield higher classification accuracy when compared to the prevailing methods and thereby proves its potential in effective breast tumor detection and classification. The proposed GWO-WNN method (98%) gives better accuracy than other methods like SOM-SVM (87.5), LOFA-SVM (93.62%), MBA-RF (96.85%), and BAS-BPNN (96.3%).

14.
Comput Biol Med ; 146: 105426, 2022 07.
Article in English | MEDLINE | ID: mdl-35569336

ABSTRACT

One of the most critical challenges in managing complex diseases like COVID-19 is to establish an intelligent triage system that can optimize the clinical decision-making at the time of a global pandemic. The clinical presentation and patients' characteristics are usually utilized to identify those patients who need more critical care. However, the clinical evidence shows an unmet need to determine more accurate and optimal clinical biomarkers to triage patients under a condition like the COVID-19 crisis. Here we have presented a machine learning approach to find a group of clinical indicators from the blood tests of a set of COVID-19 patients that are predictive of poor prognosis and morbidity. Our approach consists of two interconnected schemes: Feature Selection and Prognosis Classification. The former is based on different Matrix Factorization (MF)-based methods, and the latter is performed using Random Forest algorithm. Our model reveals that Arterial Blood Gas (ABG) O2 Saturation and C-Reactive Protein (CRP) are the most important clinical biomarkers determining the poor prognosis in these patients. Our approach paves the path of building quantitative and optimized clinical management systems for COVID-19 and similar diseases.


Subject(s)
COVID-19 , Biomarkers , Humans , Machine Learning , Pandemics , Triage/methods
15.
Sci Rep ; 12(1): 6991, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484318

ABSTRACT

Emotion recognition is defined as identifying human emotion and is directly related to different fields such as human-computer interfaces, human emotional processing, irrational analysis, medical diagnostics, data-driven animation, human-robot communication, and many more. This paper proposes a new facial emotional recognition model using a convolutional neural network. Our proposed model, "ConvNet", detects seven specific emotions from image data including anger, disgust, fear, happiness, neutrality, sadness, and surprise. The features extracted by the Local Binary Pattern (LBP), region based Oriented FAST and rotated BRIEF (ORB) and Convolutional Neural network (CNN) from facial expressions images were fused to develop the classification model through training by our proposed CNN model (ConvNet). Our method can converge quickly and achieves good performance which the authors can develop a real-time schema that can easily fit the model and sense emotions. Furthermore, this study focuses on the mental or emotional stuff of a man or woman using the behavioral aspects. To complete the training of the CNN network model, we use the FER2013 databases at first, and then apply the generalization techniques to the JAFFE and CK+ datasets respectively in the testing stage to evaluate the performance of the model. In the generalization approach on the JAFFE dataset, we get a 92.05% accuracy, while on the CK+ dataset, we acquire a 98.13% accuracy which achieve the best performance among existing methods. We also test the system's success by identifying facial expressions in real-time. ConvNet consists of four layers of convolution together with two fully connected layers. The experimental results show that the ConvNet is able to achieve 96% training accuracy which is much better than current existing models. However, when compared to other validation methods, the suggested technique was more accurate. ConvNet also achieved validation accuracy of 91.01% for the FER2013 dataset. We also made all the materials publicly accessible for the research community at: https://github.com/Tanoy004/Emotion-recognition-through-CNN .


Subject(s)
Facial Recognition , Anger , Emotions , Facial Expression , Female , Humans , Male , Neural Networks, Computer
16.
ACS Omega ; 7(14): 11578-11586, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35449927

ABSTRACT

Identifying the number of oil families in petroleum basins provides practical and valuable information in petroleum geochemistry studies from exploration to development. Oil family grouping helps us track migration pathways, identify the number of active source rock(s), and examine the reservoir continuity. To date, almost in all oil family typing studies, common statistical methods such as principal component analysis (PCA) and hierarchical clustering analysis (HCA) have been used. However, there is no publication regarding using artificial neural networks (ANNs) for examining the oil families in petroleum basins. Hence, oil family typing requires novel and not overused and common techniques. This paper is the first report of oil family typing using ANNs as robust computational methods. To this end, a self-organization map (SOM) neural network associated with three clustering validity indexes was employed on oil samples belonging to the Iranian part of the Persian Gulf oilfields. For the SOM network, at first, 10 default clusters were selected. Afterward, three effective clustering validity coefficients, namely, Calinski-Harabasz (CH), Silhouette (SH), and Davies-Bouldin (DB), were studied to find the optimum number of clusters. Accordingly, among 10 default clusters, the maximum CH (62) and SH (0.58) were acquired for 4 clusters. Similarly, the lowest DB (0.8) was obtained for four clusters. Thus, all three validation coefficients introduced four clusters as the optimum number of clusters or oil families. According to the geochemical parameters, it can be deduced that the corresponding source rocks of four oil families have been deposited in a marine carbonate depositional environment under dysoxic-anoxic conditions. However, oil families show some differences based on geochemical data. The number of oil families identified in the present report is consistent with those previously reported by other researchers in the same study area. However, the techniques used in the present paper, which have not been implemented so far, can be introduced as more straightforward for clustering purposes in oil family typing than those of common and overused methods of PCA and HCA.

17.
Math Biosci Eng ; 19(3): 2381-2402, 2022 01 04.
Article in English | MEDLINE | ID: mdl-35240789

ABSTRACT

Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis.


Subject(s)
Myocarditis , Adult , Algorithms , Cluster Analysis , Humans , Magnetic Resonance Imaging , Myocarditis/diagnostic imaging , Neural Networks, Computer
18.
Math Biosci Eng ; 19(2): 1471-1495, 2022 01.
Article in English | MEDLINE | ID: mdl-35135213

ABSTRACT

Cloud computing is an attractive model that provides users with a variety of services. Thus, the number of cloud services on the market is growing rapidly. Therefore, choosing the proper cloud service is an important challenge. Another major challenge is the availability of diverse cloud services with similar performance, which makes it difficult for users to choose the cloud service that suits their needs. Therefore, the existing service selection approaches is not able to solve the problem, and cloud service recommendation has become an essential and important need. In this paper, we present a new way for context-aware cloud service recommendation. Our proposed method seeks to solve the weakness in user clustering, which itself is due to reasons such as 1) lack of full use of contextual information such as cloud service placement, and 2) inaccurate method of determining the similarity of two vectors. The evaluation conducted by the WSDream dataset indicates a reduction in the cloud service recommendation process error rate. The volume of data used in the evaluation of this paper is 5 times that of the basic method. Also, according to the T-test, the service recommendation performance in the proposed method is significant.


Subject(s)
Cloud Computing , Cluster Analysis
19.
Cluster Comput ; 25(4): 2351-2368, 2022.
Article in English | MEDLINE | ID: mdl-34341656

ABSTRACT

The industrial ecosystem has been unprecedentedly affected by the COVID-19 pandemic because of its immense contact restrictions. Therefore, the manufacturing and socio-economic operations that require human involvement have significantly intervened since the beginning of the outbreak. As experienced, the social-distancing lesson in the potential new-normal world seems to force stakeholders to encourage the deployment of contactless Industry 4.0 architecture. Thus, human-less or less-human operations to keep these IoT-enabled ecosystems running without interruptions have motivated us to design and demonstrate an intelligent automated framework. In this research, we have proposed "EdgeSDN-I4COVID" architecture for intelligent and efficient management during COVID-19 of the smart industry considering the IoT networks. Moreover, the article presents the SDN-enabled layer, such as data, control, and application, to effectively and automatically monitor the IoT data from a remote location. In addition, the proposed convergence between SDN and NFV provides an efficient control mechanism for managing the IoT sensor data. Besides, it offers robust data integration on the surface and the devices required for Industry 4.0 during the COVID-19 pandemic. Finally, the article justified the above contributions through particular performance evaluations upon appropriate simulation setup and environment.

20.
Math Biosci Eng ; 18(6): 7239-7268, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34814247

ABSTRACT

With the rapid development of ICT, the present world is experiencing rapid changes in the field of education. Implementation of e-learning and ICT in the education system could allow teachers to upgrade and improve their lectures. However, from the perspective of value co-creation behavior in learning communities, conventional learning and e-learning classrooms may encounter different opportunities and challenges. Thus, a more in-depth investigation would be needed. Based on the S-O-R framework, this study identifies self-directed learning as a stimulus, perceived benefits as the organism, and value co-creation behavior as the response. By applying the multi-criteria decision-making techniques of DEMATEL, ANP, and VIKOR, this study explores the causal effects, influential weights, and performance ranking of the primary constructs in the framework as criteria. This study's theoretical and practical implications are discussed, and ways of improving learning performance are suggested.


Subject(s)
Computer-Assisted Instruction , Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...