Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 416: 125754, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33813294

ABSTRACT

Neodymium-doped polyaniline supported Zn-Al layered double hydroxide (PANI@Nd-LDH) nanocomposite has been prepared via an ex-situ oxidative polymerization process. The as-prepared nanocomposite shows selective fluorescence detection and adsorption of hexavalent chromium Cr(VI) within a short period. The fluorescence intensity of PANI@Nd-LDH decreases linearly with Cr(VI) concentrations ranging from 200 ppb to 1000 ppb with a limit of detection (LOD) of 1.5 nM and a limit of quantification (LOQ) of 96 nM. The sensing mechanism can be ascribed by the inner filter effect of Cr(VI), the intercalation of Cr(VI) within the intergallery region of LDH, and the synergistic affinity of metal ions along with the polymer chain for Cr(VI). The adsorption performance of PANI@Nd-LDH nanocomposite is evaluated for Cr(VI) from wastewaters, which displayed high removal capacity towards Cr(VI) (219 mg/g) as compared on bare Nd-LDH (123 mg/g) and LDH (88 mg/g) respectively. The adsorption of Cr(VI) on PANI@Nd-LDH depends on the pH of the aqueous solution. The adsorption isotherm and kinetics are supported by the Langmuir model and pseudo-second-order model, respectively. Owing to the highly sensitive detection and adsorption of Cr(VI) from aqueous water samples demonstrated the potential application of PANI@Nd-LDH as an excellent environmental probe can be exploited.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Adsorption , Aniline Compounds , Chromium/analysis , Hydroxides , Kinetics , Neodymium , Wastewater , Water Pollutants, Chemical/analysis
2.
Article in English | MEDLINE | ID: mdl-31200470

ABSTRACT

The present study reports mathematical modelling of palm oil mill effluent and palm-pressed fiber mixtures (0% to 100%) during vermicomposting process. The effects of different mixtures with respect to pH, C:N ratio and earthworms have been optimized using the modelling parameters. The results of analysis of variance have established effect of different mixtures of palm oil mill effluent plus palm press fiber and time, under selected physicochemical responses (pH, C:N ratio and earthworm numbers). Among all mixtures, 60% mixture was achieved optimal growth at pH 7.1 using 16.29 C:N ratio in 15 days of vermicomposting. The relationship between responses, time and different palm oil mill waste mixtures have been summarized in terms of regression models. The obtained results of mathematical modeling suggest that these findings have potential to serve a platform for further studies in terms of kinetic behavior and degradation of the biowastes via vermicomposting.


Subject(s)
Composting , Industrial Waste , Models, Theoretical , Oligochaeta/metabolism , Palm Oil , Animals , Biomass
3.
RSC Adv ; 8(43): 24571-24587, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-35539168

ABSTRACT

The present review covers the regeneration capacity and adsorption efficiency of different adsorbents for the treatment of industrial dyes to control water pollution. Various techniques and materials have been employed to remove organic pollutants from water; however, adsorption techniques using cost-effective, ecofriendly, clay-supported adsorbents are widely used owing to their simplicity and good efficiency. Among all the natural adsorbents, activated carbon has been found to be the most effective for dye adsorption; however, its use is restricted due to its high regeneration cost. Clays and modified clay-based adsorbents are the most efficient clarifying agents for organic pollutants as compared to activated carbon, organic/inorganic, and composite materials. Regeneration is an important aspect to stimulate the adsorption efficiency of the exhausted/spent adsorbent for water treatment. A number of techniques, including chemical treatment, supercritical extraction, thermal, and photocatalytic and biological degradation, have been developed to regenerate spent or dye-adsorbed clays. This review discusses how these techniques enhance the adsorption and retention potential of spent low-cost adsorbents and reflects on the future perspectives for their use in wastewater treatment.

4.
Adv Colloid Interface Sci ; 249: 2-16, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28935100

ABSTRACT

Among the various electrically conducting polymers, polyaniline (PANI) has gained attentions due to its unique properties and doping chemistry. A number of electrically conducting biodegradable polymers has been synthesized by incorporating a biodegradable content of cellulose, chitin, chitosan, etc. in the matrix of PANI. The hybrid materials are also employed as photocatalysts, antibacterial agents, sensors, fuel cells and as materials in biomedical applications. Furthermore, these biodegradable and biocompatible conducting polymers are employed in tissue engineering, dental implants and targeted drug delivery. This review presents state of the art of PANI based biodegradable polymers along with their synthesis routes and unique applications in diverse fields. In future, the synthesis of PANI-grafted biodegradable nanocomposite material is expected to open innovative ways for their outstanding applications.

5.
3 Biotech ; 7(3): 155, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28623493

ABSTRACT

Several technologies are being applied for treatment of palm oil mill wastes. Among them, the biological treatments (vermicomposting) have widely been recognized as one of the most efficient and eco-friendly methods for converting organic waste materials into valuable products. The present study focuses on vermicomposting of acidic palm oil mill effluent (POME) mixed with the palm pressed fibre (PPF) which are found difficult to decompose in the environment. The industrial waste (POME) was vermicomposted using Lumbricus rubellus under laboratory conditions for a period of 45 days. A significant improvement in nitrogen, phosphorus, and potassium content was monitored during vermicomposting process. In addition, the decline in C:N ratio of vermicompost (up to 17.20 ± 0.60) reflects the degree of stabilization of POME-PPF mixture. Different percentages of the vermicompost extract obtained from POME-PPF mixture were also examined for the germination of mung bean (Vigna radiata) seed. The results showed that 75% vermicompost extract demonstrated better performance for the seed germination. On the basis of significant findings, POME-PPF mixture can be successfully used as a feeding material for the earthworms, while on the other hand, it can also be used as a cost-effective fertilizer for the germination and the proper growth of mung bean.

6.
Environ Sci Pollut Res Int ; 24(14): 12982-12990, 2017 May.
Article in English | MEDLINE | ID: mdl-28378309

ABSTRACT

The present paper reports management of palm oil mill effluent (POME) mixed with palm-pressed fibre (PPF) POME-PPF mixture using eco-friendly, cost-effective vermicomposting technology. Vermicomposting of POME-PPF was performed to examine the optimal POME-PPF ratio with respect to the criteria of earthworm biomass and to evaluate the decomposition of carbon and nitrogen in different percentages of POME-PPF mixtures. Chemical parameters such as TOC, N, P and K contents were determined to achieve optimal decomposition of POME-PPF. On this basis, the obtained data of 50% POME-PPF mixture demonstrated more significant results throughout the experiment after addition of the earthworms. However, 60 and 70% mixtures found significant only in the last stages of the vermicomposting process. The decomposition rate in terms of -ln (CNt/CNo) showed that the 50% mixture has higher decomposition rate as compared to the 60 and 70% (k50% = 0.0498 day-1). The vermicomposting extracts (50, 60 and 70%) of POME-PPF mixtures were also tested to examine the growth of mung bean (Vigna radiata). It was found that among different extract dilutions, 50% POME-PPF vermicompost extract provided longer root and shoot length of mung bean. The present study concluded that the 50% mixture of POME-PPF could be chosen as the optimal mixture for vermicomposting in terms of both decomposition rate and fertilizer value of the final compost. Graphical abstract ᅟ.


Subject(s)
Industrial Waste , Plant Oils/chemistry , Animals , Kinetics , Oligochaeta , Palm Oil , Recycling
7.
Environ Monit Assess ; 188(7): 404, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27295186

ABSTRACT

The present study deals with possible contamination of the soil by metal ions which have been affecting the environment. The concentrations of metal ions in 14 borehole samples were studied using the ICP-OES standard method. The degree of contamination was determined on the basis of single element pollution index (SEPI), combined pollution index (CPI), soil enrichment factor (SEF), and geo-accumulation index (Igeo). Geo-accumulation indices and contamination factors indicated moderate to strong contaminations for eight boreholes (BL-1, BL-2, BL-6, BL-8, BL-9, BL-10, BL-12, and BL-13) while the rest were extremely contaminated. Among all the boreholes, BL-3 and BL-11 demonstrated the highest level of Cd(II) and Pb(II) which were found the most polluted sites. The level of metal contamination was also compared with other countries. The development, variation, and limitations regarding the regulations of soil and groundwater contamination can be provided as a helpful guidance for the risk assessment of metal ions in developing countries.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/analysis , Soil Pollutants/analysis , Environmental Pollution/analysis , Groundwater/analysis , Soil/chemistry
8.
Colloids Surf B Biointerfaces ; 126: 121-37, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25543989

ABSTRACT

This article explains recent advances in the synthesis and characterization of novel titanium-based nanocomposite materials. Currently, it is a pressing concern to develop innovative skills for the fabrication of hybrid nanomaterials under varying experimental conditions. This review generally focuses on the adsorption behavior of nanocomposites for the exclusion of organic and inorganic pollutants from industrial effluents and their significant applications in various fields. The assessment of recently published articles on the conjugation of organic polymers with titanium has revealed that these materials may be a new means of managing aquatic pollution. These nanocomposite materials not only create alternative methods for designing novel materials, but also develop innovative industrial applications. In the future, titanium-based hybrid nanomaterials are expected to open new approaches for demonstrating their outstanding applications in diverse fields.


Subject(s)
Industrial Waste/analysis , Nanocomposites/chemistry , Organometallic Compounds/chemistry , Polymers/chemistry , Titanium/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Organometallic Compounds/chemical synthesis , Surface Properties , Water Pollutants, Chemical/chemistry
9.
J Hazard Mater ; 264: 481-9, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24238807

ABSTRACT

A novel polyaniline based composite cation exchange material has been synthesized by simple chemical route and characterized on the basis of sophisticated techniques. XRD and SEM analyses reveal the amorphous morphology of the material. The partition coefficient studies of different metal ions on the material were performed in DMW and diverse concentrations of HClO4 solutions. On the basis of high Kd values some significant separations of heavy toxic metal ions were achieved from synthetic mixtures as well as tap water samples by using columns of this exchanger. For the optimum adsorption of dye on the material, the effect of various parameters along with Langmuir and Freundlich adsorption isotherm were examined. The observed result of conducting measurement indicates that the material covers semiconductor range. The photochemical degradation of industrial dyes and antimicrobial activity were also investigated which show significant results than some of the known antibiotics. On the basis of good ion exchange capacity along with photochemical degradation and microbial activity, polyanilineTi(IV)arsenophosphate can be considered as an excellent conducting material for the treatment metal ions and degradation of organic pollutants.


Subject(s)
Anti-Infective Agents/chemical synthesis , Arsenicals/chemical synthesis , Coordination Complexes/chemical synthesis , Water Pollutants, Chemical/chemistry , Adsorption , Coloring Agents/chemistry , Electric Conductivity , Metals, Heavy/analysis , Photolysis
10.
Colloids Surf B Biointerfaces ; 87(1): 122-8, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21640566

ABSTRACT

A novel organic-inorganic nanocomposite cation-exchanger has been synthesized via sol-gel method. It was characterized on the basis of FTIR, XRD, SEM, TEM, AFM and Raman studies. The structural studies reveal semi-crystalline nature of the material with the particle size ranging from 1-5 nm. Physiochemical properties such as ion-exchange capacity, chemical and thermal stability of composite material have also been determined. Bifunctional behavior of the material has been indicated by its pH titrations curves. The nanocomposite material exhibits improved thermal stability, higher ion-exchange capacity and better selectivity for toxic heavy metals. The ion-exchange material shows an ion-exchange capacity of 1.8 meq g(-1) for Na(+) ions. Sorption behavior of metal ions on the material was studied in different solvents. The cation exchanger was found to be selective for Pb(II), Hg(II) and Zr(IV) ions. The limit of detection (LOD) and the limit of quantification (LOQ) for Pb(II) ion was found to be 0.85 and 2.85 µg L(-1). Analytically important separations of heavy metal ions in synthetic mixtures as well as industrial effluents and natural water were achieved with the exchanger. The practical utility of polyanilineZr(IV)sulphosalicylate cation exchanger has been established for the analysis and recovery of heavy metal ions in environmental samples.


Subject(s)
Cation Exchange Resins/chemistry , Cation Exchange Resins/chemical synthesis , Nanocomposites/chemistry , Adsorption , Aniline Compounds/chemistry , Electroplating , Industrial Waste/analysis , Ions , Lead/isolation & purification , Limit of Detection , Microscopy, Atomic Force , Nanocomposites/ultrastructure , Rivers/chemistry , Spectroscopy, Fourier Transform Infrared , Waste Disposal, Fluid , Water/chemistry , Water Pollutants, Chemical/isolation & purification , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...