Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Microbiol ; 14: 1296558, 2023.
Article in English | MEDLINE | ID: mdl-38094629

ABSTRACT

Coronaviruses are the causative agents of several recent outbreaks, including the COVID-19 pandemic. One therapeutic approach is blocking viral binding to the host receptor. As binding largely depends on electrostatic interactions, we hypothesized possible inhibition of viral infection through application of electric fields, and tested the effectiveness of Tumor Treating Fields (TTFields), a clinically approved cancer treatment based on delivery of electric fields. In preclinical models, TTFields were found to inhibit coronavirus infection and replication, leading to lower viral secretion and higher cell survival, and to formation of progeny virions with lower infectivity, overall demonstrating antiviral activity. In a pilot clinical study (NCT04953234), TTFields therapy was safe for patients with severe COVID-19, also demonstrating preliminary effectiveness data, that correlated with higher device usage.

2.
J Neurooncol ; 164(1): 1-9, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37493865

ABSTRACT

PURPOSE: Tumor Treating Fields (TTFields) therapy, an electric field-based cancer treatment, became FDA-approved for patients with newly diagnosed glioblastoma (GBM) in 2015 based on the randomized controlled EF-14 study. Subsequent approvals worldwide and increased adoption over time have raised the question of whether a consistent survival benefit has been observed in the real-world setting, and whether device usage has played a role. METHODS: We conducted a literature search to identify clinical studies evaluating overall survival (OS) in TTFields-treated patients. Comparative and single-cohort studies were analyzed. Survival curves were pooled using a distribution-free random-effects method. RESULTS: Among nine studies, seven (N = 1430 patients) compared the addition of TTFields therapy to standard of care (SOC) chemoradiotherapy versus SOC alone and were included in a pooled analysis for OS. Meta-analysis of comparative studies indicated a significant improvement in OS for patients receiving TTFields and SOC versus SOC alone (HR: 0.63; 95% CI 0.53-0.75; p < 0.001). Among real-world post-approval studies, the pooled median OS was 22.6 months (95% CI 17.6-41.2) for TTFields-treated patients, and 17.4 months (95% CI 14.4-21.6) for those not receiving TTFields. Rates of gross total resection were generally higher in the real-world setting, irrespective of TTFields use. Furthermore, for patients included in studies reporting data on device usage (N = 1015), an average usage rate of ≥ 75% was consistently associated with prolonged survival (p < 0.001). CONCLUSIONS: Meta-analysis of comparative TTFields studies suggests survival may be improved with the addition of TTFields to SOC for patients with newly diagnosed GBM.


Subject(s)
Brain Neoplasms , Electric Stimulation Therapy , Glioblastoma , Humans , Glioblastoma/pathology , Temozolomide/therapeutic use , Electric Stimulation Therapy/methods , Brain Neoplasms/pathology , Combined Modality Therapy
3.
Int J Radiat Oncol Biol Phys ; 112(5): 1269-1278, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34963556

ABSTRACT

PURPOSE: Tumor-treating fields (TTFields) are an antimitotic treatment modality that interfere with glioblastoma (GBM) cell division and organelle assembly by delivering low-intensity, alternating electric fields to the tumor. A previous analysis from the pivotal EF-14 trial demonstrated a clear correlation between TTFields dose density at the tumor bed and survival in patients treated with TTFields. This study tests the hypothesis that the antimitotic effects of TTFields result in measurable changes in the location and patterns of progression of newly diagnosed GBM. METHODS AND MATERIALS: Magnetic resonance images of 428 newly diagnosed GBM patients who participated in the pivotal EF-14 trial were reviewed, and the rates at which distant progression occurred in the TTFields treatment and control arm were compared. Realistic head models of 252 TTFields-treated patients were created, and TTFields intensity distributions were calculated using a finite element method. The TTFields dose was calculated within regions of the tumor bed and normal brain, and its relationship with progression was determined. RESULTS: Distant progression was frequently observed in the TTFields-treated arm, and distant lesions in the TTFields-treated arm appeared at greater distances from the primary lesion than in the control arm. Distant progression correlated with improved clinical outcome in the TTFields patients, with no such correlation observed in the controls. Areas of normal brain that remained normal were exposed to higher TTFields doses compared with normal brain that subsequently exhibited neoplastic progression. Additionally, the average dose to areas of the enhancing tumor that returned to normal was significantly higher than in the areas of the normal brain that progressed to enhancing tumor. CONCLUSIONS: There was a direct correlation between TTFields dose distribution and tumor response, confirming the therapeutic activity of TTFields and the rationale for optimizing array placement to maximize the TTFields dose in areas at highest risk of progression, as well as array layout adaptation after progression.


Subject(s)
Antimitotic Agents , Brain Neoplasms , Electric Stimulation Therapy , Glioblastoma , Antimitotic Agents/therapeutic use , Brain/diagnostic imaging , Brain/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Electric Stimulation Therapy/methods , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Humans , Magnetic Resonance Imaging
4.
J Clin Pathol ; 73(10): 636-641, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32060074

ABSTRACT

AIMS: To analyse microRNA (miR)-21 distribution and expression at the cellular level in non-small cell lung cancer (NSCLC). MiR-21 is an oncogenic microRNA overexpressed in NSCLC. In previous studies, overexpression of miR-21 was evaluated from the tumour bulk by quantitative reverse transcription PCR with results expressed on average across the entire cell population. METHODS: We used in situ hybridisation and immunohistochemistry to assess the correlation between miR-21 levels and the expression of markers that may be possible targets (epidermal growth factor reaction) or may be involved in its upregulation (phosphatase and tensin homolog (PTEN), p53). The Pearson's χ2 tests was used to assess correlation with clinicopathological data and with miR-21 expression both in tumour and tumour stroma. RESULTS: Cytoplasmic staining and expression of Mir-21 were detected in the tumours and in associated stromal cells. Expression was highest in the stroma immediately surrounding the tumour cells and decreased as the distance from the tumour increased. No expression of miR-21 was found in normal lung parenchyma and a significant association was found between tumour localised miR-21 and PTEN. CONCLUSIONS: Presence of miR-21 in both cell tumour and stromal compartments of NSCLC and the relationship with PTEN confirms miR-21 as a microenvironment signalling molecule, possibly inducing epithelial mesenchymal transition and invasion by targeting PTEN in the stromal compartment possibly through exosomal transport. In situ immunohistochemical studies such as ours may help shed light on the complex interactions between miRNAs and its role in NSCLC biology.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Regulation, Neoplastic/genetics , Lung Neoplasms/genetics , MicroRNAs/metabolism , Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/metabolism , Humans , Immunohistochemistry/methods , In Situ Hybridization/methods , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , PTEN Phosphohydrolase/metabolism
5.
Aging Cell ; 18(4): e12959, 2019 08.
Article in English | MEDLINE | ID: mdl-31056853

ABSTRACT

Aging is associated with increasing prevalence and severity of infections caused by a decline in bone marrow (BM) lymphopoiesis and reduced B-cell repertoire diversity. The current study proposes a strategy to enhance immune responsiveness in aged mice and humans, through rejuvenation of the B lineage upon B-cell depletion. We used hCD20Tg mice to deplete peripheral B cells in old and young mice, analyzing B-cell subsets, repertoire and cellular functions in vitro, and immune responsiveness in vivo. Additionally, elderly patients, previously treated with rituximab healthy elderly and young individuals, were vaccinated against hepatitis B (HBV) after undergoing a detailed analysis for B-cell compartments. B-cell depletion in old mice resulted in rejuvenated B-cell population that was derived from de novo synthesis in the bone marrow. The rejuvenated B cells exhibited a "young"-like repertoire and cellular responsiveness to immune stimuli in vitro. Yet, mice treated with B-cell depletion did not mount enhanced antibody responses to immunization in vivo, nor did they survive longer than control mice in "dirty" environment. Consistent with these results, peripheral B cells from elderly depleted patients showed a "young"-like repertoire, population dynamics, and cellular responsiveness to stimulus. Nevertheless, the response rate to HBV vaccination was similar between elderly depleted and nondepleted subjects, although antibody titers were higher in depleted patients. This study proposes a proof of principle to rejuvenate the peripheral B-cell compartment in aging, through B-cell depletion. Further studies are warranted in order to apply this approach for enhancing humoral immune responsiveness among the elderly population.


Subject(s)
Aging/immunology , B-Lymphocytes/immunology , Lymphocyte Depletion/methods , Rejuvenation/physiology , Adolescent , Adult , Aged , Animals , Antigens, CD20/genetics , Antigens, CD20/immunology , Antineoplastic Agents, Immunological/therapeutic use , Bone Marrow Cells/immunology , Female , Healthy Volunteers , Humans , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/drug therapy , Lymphopoiesis/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Middle Aged , Prospective Studies , Rituximab/therapeutic use , Young Adult
6.
Int J Radiat Oncol Biol Phys ; 104(5): 1106-1113, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31026557

ABSTRACT

INTRODUCTION: Tumor Treating Fields (TTFields) are approved for glioblastoma based on improved overall survival (OS) and progression-free survival (PFS) in the phase 3 EF-14 trial of newly diagnosed glioblastoma. To test the hypothesis that increasing TTFields dose at the tumor site improves patient outcomes, we performed a simulation-based study investigating the association between TTFields dose and survival (OS and PFS) in patients treated with TTFields in EF-14. METHODS AND MATERIALS: EF-14 patient cases (N = 340) were included. Realistic head models were derived from T1-contrast images captured at baseline. The transducer array layout on each patient was obtained from EF-14 records; average compliance (fraction of time patient was on active treatment) and average electrical current delivered to the patient were derived from log files of the TTFields devices used by patients. TTFields intensity distributions and power densities were calculated using the finite element method. Local minimum dose density (LMiDD) was defined as the product of TTFields intensity, tissue-specific conductivities, and patient compliance. The average LMiDD within a tumor bed comprising the gross tumor volume and the 3-mm-wide peritumoral boundary zone was calculated. RESULTS: The median OS and PFS were significantly longer when the average LMiDD in the tumor bed was ≥0.77 mW/cm3: OS was 25.2 versus 20.4 months (P = .003, hazard ratio [HR] = 0.611) and PFS was 8.5 versus 6.7 months (P = .02, HR = 0.699). The median OS and PFS were longer when the average TTFields intensity was >1.06 V/cm: OS was 24.3 versus 21.6 months (P = .03, HR = 0.705) and PFS was 8.1 versus 7.9 months (P = .03, HR = 0.721). CONCLUSIONS: In this study we present the first reported analysis demonstrating patient-level dose responses to TTFields. We provide a rigorous definition for TTFields dose and set a conceptual framework for future work on TTFields dosimetry and treatment planning.


Subject(s)
Brain Neoplasms/mortality , Brain Neoplasms/radiotherapy , Glioblastoma/mortality , Glioblastoma/radiotherapy , Adult , Aged , Aged, 80 and over , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Electrophysiological Phenomena , Female , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Humans , Kaplan-Meier Estimate , Magnetic Resonance Imaging , Male , Middle Aged , Progression-Free Survival , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Transducers , Young Adult
7.
JAMA Oncol ; 4(4): 495-504, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29392280

ABSTRACT

IMPORTANCE: Tumor-treating fields (TTFields) therapy improves both progression-free and overall survival in patients with glioblastoma. There is a need to assess the influence of TTFields on patients' health-related quality of life (HRQoL). OBJECTIVE: To examine the association of TTFields therapy with progression-free survival and HRQoL among patients with glioblastoma. DESIGN, SETTING, AND PARTICIPANTS: This secondary analysis of EF-14, a phase 3 randomized clinical trial, compares TTFields and temozolomide or temozolomide alone in 695 patients with glioblastoma after completion of radiochemotherapy. Patients with glioblastoma were randomized 2:1 to combined treatment with TTFields and temozolomide or temozolomide alone. The study was conducted from July 2009 until November 2014, and patients were followed up through December 2016. INTERVENTIONS: Temozolomide, 150 to 200 mg/m2/d, was given for 5 days during each 28-day cycle. TTFields were delivered continuously via 4 transducer arrays placed on the shaved scalp of patients and were connected to a portable medical device. MAIN OUTCOMES AND MEASURES: Primary study end point was progression-free survival; HRQoL was a predefined secondary end point, measured with questionnaires at baseline and every 3 months thereafter. Mean changes from baseline scores were evaluated, as well as scores over time. Deterioration-free survival and time to deterioration were assessed for each of 9 preselected scales and items. RESULTS: Of the 695 patients in the study, 639 (91.9%) completed the baseline HRQoL questionnaire. Of these patients, 437 (68.4%) were men; mean (SD) age, 54.8 (11.5) years. Health-related quality of life did not differ significantly between treatment arms except for itchy skin. Deterioration-free survival was significantly longer with TTFields for global health (4.8 vs 3.3 months; P < .01); physical (5.1 vs 3.7 months; P < .01) and emotional functioning (5.3 vs 3.9 months; P < .01); pain (5.6 vs 3.6 months; P < .01); and leg weakness (5.6 vs 3.9 months; P < .01), likely related to improved progression-free survival. Time to deterioration, reflecting the influence of treatment, did not differ significantly except for itchy skin (TTFields worse; 8.2 vs 14.4 months; P < .001) and pain (TTFields improved; 13.4 vs 12.1 months; P < .01). Role, social, and physical functioning were not affected by TTFields. CONCLUSIONS AND RELEVANCE: The addition of TTFields to standard treatment with temozolomide for patients with glioblastoma results in improved survival without a negative influence on HRQoL except for more itchy skin, an expected consequence from the transducer arrays. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00916409.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Physical Therapy Modalities , Quality of Life , Transcranial Direct Current Stimulation , Adult , Aged , Aged, 80 and over , Brain Neoplasms/epidemiology , Brain Neoplasms/psychology , Chemoradiotherapy/adverse effects , Chemoradiotherapy/methods , Combined Modality Therapy , Cytoreduction Surgical Procedures/adverse effects , Cytoreduction Surgical Procedures/methods , Disease-Free Survival , Female , Follow-Up Studies , Glioblastoma/epidemiology , Glioblastoma/psychology , Health Status , Humans , Male , Middle Aged , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/methods , Physical Therapy Modalities/adverse effects , Surveys and Questionnaires , Temozolomide/therapeutic use , Transcranial Direct Current Stimulation/adverse effects , Transcranial Direct Current Stimulation/methods , Treatment Outcome , Young Adult
8.
JAMA ; 318(23): 2306-2316, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29260225

ABSTRACT

Importance: Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor. Objective: To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system. Design, Setting, and Participants: In this randomized, open-label trial, 695 patients with glioblastoma whose tumor was resected or biopsied and had completed concomitant radiochemotherapy (median time from diagnosis to randomization, 3.8 months) were enrolled at 83 centers (July 2009-2014) and followed up through December 2016. A preliminary report from this trial was published in 2015; this report describes the final analysis. Interventions: Patients were randomized 2:1 to TTFields plus maintenance temozolomide chemotherapy (n = 466) or temozolomide alone (n = 229). The TTFields, consisting of low-intensity, 200 kHz frequency, alternating electric fields, was delivered (≥ 18 hours/d) via 4 transducer arrays on the shaved scalp and connected to a portable device. Temozolomide was administered to both groups (150-200 mg/m2) for 5 days per 28-day cycle (6-12 cycles). Main Outcomes and Measures: Progression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group. Results: Of the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P < .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.53-0.76; P < .001). Systemic adverse event frequency was 48% in the TTFields-temozolomide group and 44% in the temozolomide-alone group. Mild to moderate skin toxicity underneath the transducer arrays occurred in 52% of patients who received TTFields-temozolomide vs no patients who received temozolomide alone. Conclusions and Relevance: In the final analysis of this randomized clinical trial of patients with glioblastoma who had received standard radiochemotherapy, the addition of TTFields to maintenance temozolomide chemotherapy vs maintenance temozolomide alone, resulted in statistically significant improvement in progression-free survival and overall survival. These results are consistent with the previous interim analysis. Trial Registration: clinicaltrials.gov Identifier: NCT00916409.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Dacarbazine/analogs & derivatives , Electric Stimulation Therapy , Glioblastoma/drug therapy , Adult , Aged , Antineoplastic Agents, Alkylating/adverse effects , Chemoradiotherapy , Dacarbazine/adverse effects , Dacarbazine/therapeutic use , Disease-Free Survival , Female , Follow-Up Studies , Glioblastoma/radiotherapy , Glioblastoma/surgery , Humans , Maintenance Chemotherapy , Male , Middle Aged , Mitosis , Survival Analysis , Temozolomide
9.
Front Immunol ; 7: 77, 2016.
Article in English | MEDLINE | ID: mdl-27047488

ABSTRACT

Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment.

10.
Eur J Immunol ; 46(5): 1258-70, 2016 05.
Article in English | MEDLINE | ID: mdl-26919267

ABSTRACT

Murine NK cells can be divided by the expression of two cell surface markers, CD27 and Mac-1 (a.k.a. CD11b), into four separate subsets. These subsets suggest a linear development model: CD27(-) Mac-1(-) → CD27(+) Mac-1(-) → CD27(+) Mac-1(+) → CD27(-) Mac-1(+) . Here, we used a combination of BrdU labeling experiments and mathematical modeling to gain insights regarding NK-cell development in mouse bone marrow (BM), spleen and liver. The modeling results that best fit the experimental data show that the majority of NK cells already express CD27 upon entering the NK-cell developmental pathway. Additionally, only a small fraction of NK cells exit the BM to other sites, suggesting that peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived mature NK cells.


Subject(s)
Bone Marrow Cells/immunology , Killer Cells, Natural/physiology , Liver/immunology , Spleen/immunology , Animals , Bone Marrow Cells/physiology , CD11b Antigen/immunology , Cell Differentiation , Cells, Cultured , Computer Simulation , Killer Cells, Natural/immunology , Liver/physiology , Mice , Models, Theoretical , Spleen/physiology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
11.
Eur J Immunol ; 46(2): 480-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26614343

ABSTRACT

The elderly immune system is characterized by reduced responses to infections and vaccines, and an increase in the incidence of autoimmune diseases and cancer. Age-related deficits in the immune system may be caused by peripheral homeostatic pressures that limit bone marrow B-cell production or migration to the peripheral lymphoid tissues. Studies of peripheral blood B-cell receptor spectratypes have shown that those of the elderly are characterized by reduced diversity, which is correlated with poor health status. In the present study, we performed for the first time high-throughput sequencing of immunoglobulin genes from archived biopsy samples of primary and secondary lymphoid tissues in old (74 ± 7 years old, range 61-89) versus young (24 ± 5 years old, range 18-45) individuals, analyzed repertoire diversities and compared these to results in peripheral blood. We found reduced repertoire diversity in peripheral blood and lymph node repertoires from old people, while in the old spleen samples the diversity was larger than in the young. There were no differences in somatic hypermutation characteristics between age groups. These results support the hypothesis that age-related immune frailty stems from altered B-cell homeostasis leading to narrower memory B-cell repertoires, rather than changes in somatic hypermutation mechanisms.


Subject(s)
Aging/immunology , Antibody Diversity/physiology , B-Lymphocytes/immunology , Lymphoid Tissue/immunology , Receptors, Antigen, B-Cell/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Bone Marrow/immunology , Cells, Cultured , Female , Humans , Male , Middle Aged , Somatic Hypermutation, Immunoglobulin , Young Adult
12.
Retrovirology ; 11: 76, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25213015

ABSTRACT

BACKGROUND: Aged individuals respond poorly to vaccination and have a higher risk of contracting infections in comparison to younger individuals; whether age impacts on the composition and function of B cell subpopulations relevant for immune responses is still controversial. It is also not known whether increased age during HIV-1 infection further synergizes with the virus to alter B cell subpopulations. In view of the increased number of HIV-1 infected patients living to high age as a result of anti-retroviral treatment this is an important issue to clarify. RESULTS: In this work we evaluated the distribution of B cell subpopulations in young and aged healthy individuals and HIV-1 infected patients, treated and naïve to treatment. B cell populations were characterized for the expression of inhibitory molecules (PD-1 and FcRL4) and activation markers (CD25 and CD69); the capacity of B cells to respond to activation signals through up-regulation of IL-6 expression was also evaluated. Increased frequencies of activated and tissue-like memory B cells occurring during HIV-1 infection are corrected by prolonged ART therapy. Our findings also reveal that, in spite of prolonged treatment, resting memory B cells in both young and aged HIV-1 infected patients are reduced in number, and all memory B cell subsets show a low level of expression of the activation marker CD25. CONCLUSIONS: The results of our study show that resting memory B cells in ART-treated young and aged HIV-1 infected patients are reduced in number and memory B cell subsets exhibit low expression of the activation marker CD25. Aging per se in the HIV-1 infected population does not worsen impairments initiated by HIV-1 in the memory B cell populations of young individuals.


Subject(s)
Aging/immunology , Anti-HIV Agents/therapeutic use , B-Lymphocyte Subsets/immunology , HIV Infections/immunology , HIV-1 , Adult , Age Factors , Aged , Aged, 80 and over , Antigens, CD/analysis , Antigens, Differentiation, T-Lymphocyte/analysis , HIV Infections/drug therapy , HIV Infections/virology , Humans , Interleukin-2 Receptor alpha Subunit/analysis , Interleukin-6/biosynthesis , Lectins, C-Type/analysis , Middle Aged , Phenotype
13.
Front Immunol ; 5: 264, 2014.
Article in English | MEDLINE | ID: mdl-24917868

ABSTRACT

Chronic gastritis is characterized by gastric mucosal inflammation due to autoimmune responses or infection, frequently with Helicobacter pylori. Gastritis with H. pylori background can cause gastric mucosa-associated lymphoid tissue lymphoma (MALT-L), which sometimes further transforms into diffuse large B-cell lymphoma (DLBCL). However, gastric DLBCL can also be initiated de novo. The mechanisms underlying transformation into DLBCL are not completely understood. We analyzed immunoglobulin repertoires and clonal trees to investigate whether and how immunoglobulin gene repertoires, clonal diversification, and selection in gastritis, gastric MALT-L, and DLBCL differ from each other and from normal responses. The two gastritis types (positive or negative for H. pylori) had similarly diverse repertoires. MALT-L dominant clones (defined as the largest clones in each sample) presented higher diversification and longer mutational histories compared with all other conditions. DLBCL dominant clones displayed lower clonal diversification, suggesting the transforming events are triggered by similar responses in different patients. These results are surprising, as we expected to find similarities between the dominant clones of gastritis and MALT-L and between those of MALT-L and DLBCL.

14.
Eur J Immunol ; 42(2): 511-21, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22057631

ABSTRACT

Lyn, an Src-family protein tyrosine kinase expressed in B lymphocytes, contributes to initiation of BCR signaling and is also responsible for feedback inhibition of BCR signaling. Lyn-deficient mice have a decreased number of follicular B cells and also spontaneously develop a lupus-like autoimmunity. We used flow cytometric analysis, BrdU labeling and our mathematical models of B-cell population dynamics, to analyze how Lyn deficiency impacts B-cell maturation and survival. We found that Lyn-deficient transitional 1 (T1) cells develop normally, but T2 cells develop primarily from the T1 subset in the spleen and fail to also develop directly from BM immature B cells. Lyn-deficient T2 cells either mature to the follicular B-cell type at a close to normal rate, or die in this compartment rather than access the T3 anergic subset. The ≈ 40% of WT follicular cells that were short-lived exited primarily by joining the T3 anergic subset, whereas the ≈ 15% Lyn(-/-) follicular cells that were not long lived had a high death rate and died in this compartment rather than entering the T3 subset. We hypothesize that exaggerated BCR signaling resulting from weak interactions with self-antigens is largely responsible for these alterations in Lyn-deficient B cells.


Subject(s)
B-Lymphocyte Subsets/metabolism , Cell Differentiation , Models, Theoretical , Precursor Cells, B-Lymphoid/metabolism , src-Family Kinases/metabolism , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/pathology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Separation , Cell Survival/genetics , Cell Survival/immunology , Cells, Cultured , Flow Cytometry , Immunoglobulin M/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Precursor Cells, B-Lymphoid/immunology , Precursor Cells, B-Lymphoid/pathology , Receptors, Antigen, B-Cell/immunology , Receptors, IgE/metabolism , Signal Transduction/immunology , Spleen/pathology , src-Family Kinases/genetics , src-Family Kinases/immunology
15.
PLoS One ; 6(9): e24927, 2011.
Article in English | MEDLINE | ID: mdl-21949790

ABSTRACT

In this study we have addressed the question of how activation and inhibition of human NK cells is regulated by the expression level of MHC class I protein on target cells. Using target cell transfectants sorted to stably express different levels of the MHC class I protein HLA-Cw6, we show that induction of degranulation and that of IFN-γ secretion are not correlated. In contrast, the inhibition of these two processes by MHC class-I occurs at the same level of class I MHC protein. Primary human NK cell clones were found to differ in the amount of target MHC class I protein required for their inhibition, rather than in their maximum killing capacity. Importantly, we show that KIR2DL1 expression determines the thresholds (in terms of MHC I protein levels) required for NK cell inhibition, while the expression of other receptors such as LIR1 is less important. Furthermore, using mathematical models to explore the dynamics of target cell killing, we found that the observed delay in target cell killing is exhibited by a model in which NK cells require some activation or priming, such that each cell can lyse a target cell only after being activated by a first encounter with the same or a different target cell, but not by models which lack this feature.


Subject(s)
Apoptosis , Cytotoxicity, Immunologic/immunology , HLA-C Antigens/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Models, Theoretical , Receptors, KIR2DL1/metabolism , Cells, Cultured , Clone Cells , Flow Cytometry , HLA-C Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , Killer Cells, Natural/metabolism
16.
J Immunol ; 187(5): 2140-7, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21810615

ABSTRACT

Aging is accompanied by a decline in B lymphopoiesis in the bone marrow and accumulation of long-lived B cells in the periphery. The mechanisms underlying these changes are unclear. To explore whether aging in the B lineage is subjected to homeostatic regulation, we used mutant mice bearing chronic B cell deficiency from birth. We show that chronic B cell deficiency from birth, resulting from impaired maturation (CD19(-/-) and CD74(-/-)) or reduced survival (baff-r(-/-)), prevents age-related changes in the B lineage. Thus, frequencies of early and late hematopoietic stem cells, B lymphopoiesis, and the rate of B cell production do not substantially change with age in these mice, as opposed to wild-type mice where kinetic experiments indicate that the output from the bone marrow is impaired. Further, we found that long-lived B cells did not accumulate and peripheral repertoire was not altered with age in these mice. Collectively, our results suggest that aging in the B lineage is not autonomously progressing but subjected to homeostatic regulation.


Subject(s)
Aging/immunology , B-Lymphocytes/cytology , Cell Differentiation/immunology , Cell Lineage , Homeostasis/immunology , Lymphopoiesis/immunology , Animals , Antigens, CD19/genetics , Antigens, CD19/immunology , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/immunology , B-Cell Activation Factor Receptor/deficiency , B-Cell Activation Factor Receptor/genetics , B-Cell Activation Factor Receptor/immunology , B-Lymphocytes/immunology , Cell Separation , Flow Cytometry , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology
17.
Int Immunol ; 22(11): 875-87, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21059768

ABSTRACT

Follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL) and primary central nervous system lymphoma are B cell malignancies. FL and DLBCL have a germinal center origin. We have applied mutational analyses and a novel algorithm for quantifying shape properties of mutational lineage trees to investigate the nature of the diversification, somatic hypermutation and selection processes that affect B cell clones in these malignancies and reveal whether they differ from normal responses. Lineage tree analysis demonstrated higher diversification and mutations per cell in the lymphoma clones. This was caused solely by the longer diversification times of the malignant clones, as their recent diversification processes were similar to those of normal responses, implying similar mutation frequencies. Since previous analyses of antigen-driven selection were shown to yield false positives, we performed a corrected analysis of replacement and silent mutation patterns, which revealed selection against replacement mutations in the framework regions, responsible for the structural integrity of the B cell receptor, but not for positive selection for replacements in the complementary determining regions. Most replacements, however, were neutral or conservative, suggesting that if at all selection operates in these malignancies it is for structural B cell receptor integrity but not for antigen binding.


Subject(s)
Cell Lineage , Central Nervous System Neoplasms/immunology , DNA Mutational Analysis , Genes, Immunoglobulin/genetics , Lymphoma, Follicular/immunology , Lymphoma, Large B-Cell, Diffuse/immunology , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Genes, Immunoglobulin/immunology , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology
18.
PLoS One ; 5(3): e9497, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20209168

ABSTRACT

BACKGROUND: B lymphocytes are subject to elimination following strong BCR ligation in the absence of appropriate second signals, and this mechanism mediates substantial cell losses during late differentiation steps in the bone marrow and periphery. Mature B cells may also be eliminated through this mechanism as well as through normal turnover, but the population containing mature cells destined for elimination has not been identified. Herein, we asked whether the transitional 3 (T3) subset, which contains most newly formed cells undergoing anergic death, could also include mature B cells destined for elimination. METHODOLOGY/PRINCIPAL FINDINGS: To interrogate this hypothesis and its implications, we applied mathematical models to previously generated in vivo labeling data. Our analyses reveal that the death rate of T3 B cells is far higher than the death rates of all other splenic B cell subpopulations. Further, the model, in which the T3 pool includes both newly formed and mature primary B cells destined for apoptotic death, shows that this cell loss may account for nearly all mature B cell turnover. CONCLUSIONS/SIGNIFICANCE: This finding has implications for the mechanism of normal mature B cell turnover.


Subject(s)
B-Lymphocytes/metabolism , Bone Marrow Cells/cytology , Cell Death , Algorithms , Animals , Cell Differentiation , Cell Movement , Computer Simulation , Kinetics , Mice , Models, Biological , Models, Statistical , Models, Theoretical , Phenotype , Spleen/pathology
19.
J Theor Biol ; 255(2): 210-22, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-18786548

ABSTRACT

During the immune response, the generation of memory B lymphocytes in germinal centers involves affinity maturation of the cells' antigen receptors, based on somatic hypermutation of receptor genes and antigen-driven selection of the resulting mutants. Affinity maturation is vital for immune protection, and is the basis of humoral immune learning and memory. Lineage trees of somatically hypermutated immunoglobulin genes often serve to qualitatively illustrate claims concerning the dynamics of affinity maturation in germinal centers. Here, we derive the quantitative relationships between parameters characterizing affinity maturation dynamics (proliferation, differentiation and mutation rates, initial affinity of the Ig to the antigen, and selection thresholds) and the mathematical properties of lineage trees, using a computer simulation which combines mathematical models for all mature B cell populations, stochastic models of hypermutation and selection, lineage tree generation and measurement of graphical tree characteristics. We identified seven key lineage tree properties, and found correlations of these with initial clone affinity and with the selection threshold. These two parameters were found to be the main factors affecting lineage tree shapes in both primary and secondary response trees. The results also confirm that recycling from centrocytes back to centroblasts is highly likely.


Subject(s)
Antibody Diversity , Antigens/immunology , Computer Simulation , Genes, Immunoglobulin , Germinal Center/immunology , Models, Immunological , B-Lymphocytes/immunology , Humans , Immunologic Memory , Receptors, Antigen/immunology , Somatic Hypermutation, Immunoglobulin
20.
Immunol Cell Biol ; 85(4): 323-32, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17404591

ABSTRACT

Despite the various processing steps involved in V(D)J recombination, which could potentially introduce many biases in the length distribution of complementarity determining region 3 (CDR3) segments, the observed CDR3 length distributions for complete repertoires are very close to a normal-like distribution. This raises the question of whether this distribution is simply a result of the random steps included in the process of gene rearrangement, or has been optimized during evolution. We have addressed this issue by constructing a simulation of gene rearrangement, which takes into account the DNA modification steps included in the process, namely hairpin opening, nucleotide additions, and nucleotide deletions. We found that the near-Gaussian- shape of CDR3 length distribution can only be obtained under a relatively narrow set of parameter values, and thus our model suggests that specific biases govern the rearrangement process. In both B-cell receptor (BCR) heavy chain and T-cell receptor beta chain, we obtained a Gaussian distribution using identical parameters, despite the difference in the number and the lengths of the D segments. Hence our results suggest that these parameters most likely reflect the optimal conditions under which the rearrangement process occurs. We have subsequently used the insights gained in this study to estimate the probability of occurrence of two exactly identical BCRs over the course of a human lifetime. Whereas identical rearrangements of the heavy chain are highly unlikely to occur within one human lifetime, for the light chain we found that this probability is not negligible, and hence the light chain CDR3 alone cannot serve as an indicator of B-cell clonality.


Subject(s)
Complementarity Determining Regions/genetics , Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics , Models, Genetic , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , B-Lymphocytes , Complementarity Determining Regions/immunology , Computer Simulation , Gene Rearrangement, B-Lymphocyte, Heavy Chain/immunology , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology , Humans , Normal Distribution , Probability Theory , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...