Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 178: 106138, 2022 04.
Article in English | MEDLINE | ID: mdl-35192957

ABSTRACT

Licorice (Glycyrrhiza glabra) is a well-known natural herb used to treat different ailments since ancient times. Glycyrrhizin (GL), which is the primary triterpenoid compound of licorice extract, has been known to have broad-spectrum pharmacological effects. GL is cleaved into glucuronide and the aglycone, glycyrrhetinic acid (GA), which exists in two stereoisomeric forms: 18α- and 18ß-GA. It is well documented that GL and GA have great potential as anti-inflammatory, anticancer, antiviral, anti-diabetic, antioxidant, and hepatoprotective agents. Studies undertaken during the coronavirus disease 2019 pandemic suggest that GL is effective at inhibiting the viral replication of severe acute respiratory syndrome coronavirus 2. The anticancer effects of GL and GA involve modulating various signaling pathways, such as the phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B pathway, the mitogen-activated protein kinase, and the mammalian target of rapamycin/signal transducer and activator of transcription 3, which are mainly involved in regulating cancer cell death, oxidative stress, and inflammation. The potential of GL and GA in preventing cancer development and suppressing the growth and invasion of different cancer types has been reviewed in this paper. This review also provides molecular insights on the mechanism of action for the oncopreventive and oncotherapeutic effects of GL and its derivative, GA, which could help develop more specific forms of these agents for clinical use.


Subject(s)
Antineoplastic Agents , COVID-19 , Glycyrrhiza , Triterpenes , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Humans , Phytochemicals , Plant Extracts , Triterpenes/pharmacology , Triterpenes/therapeutic use
2.
Nutr Health ; 28(2): 207-212, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34044656

ABSTRACT

BACKGROUND: Therapy resistance is the underlying reason for poor outcome in prostate cancer (PCa) patients. Diallyl trisulfide (DATS) is an organosulfur compound present in garlic. DATS has been shown to target PCa cells by induction of apoptosis, increase in the production of reactive oxygen species, degradation of ferritin protein and increase in the labile iron (Fe) pool. AIM: We hypothesize that DATS could induce ferroptosis, an Fe-dependent, unique non-apoptotic form of regulated cell death to eliminate therapy resistance encountered by PCa patients. METHODS: In vitro and in vivo studies should be performed to test the hypothesis. RESULTS: As per the hypothesis, DATS would eliminate apoptotic resistance via inducing ferroptosis. CONCLUSION: Since apoptosis resistance has been reported to be the underlying mechanism of therapy resistance in PCa, DATS could be used to effectively target PCa cells by overcoming apoptosis resistance and inducing ferroptosis-mediated cell death of PCa cells.


Subject(s)
Allyl Compounds , Ferroptosis , Garlic , Prostatic Neoplasms , Allyl Compounds/pharmacology , Allyl Compounds/therapeutic use , Antioxidants , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Sulfides/pharmacology , Sulfides/therapeutic use
3.
Clin Nutr ESPEN ; 46: 14-20, 2021 12.
Article in English | MEDLINE | ID: mdl-34857187

ABSTRACT

Berries are acknowledged as a rich source of major dietary antioxidants and the fact that berry phenolics exhibit antioxidant property is widely accepted. Berries are abundant in Vitamin C and polyphenols such as anthocyanins, flavonoids, and phenolic acids. Polyphenols are found to have several therapeutic effects such as anti-inflammatory, antioxidant, and antimicrobial properties. Increasing studies are focusing on natural products and their components for alternative therapeutics against viral infections. In particular, berries such as elderberry, blueberry, raspberry, and cranberry have proven to be effective against viral infections. Of note, the decoction of Honeysuckle (Lonicera japonica) has been shown to treat viral epidemic diseases. Owing to the rich source of various antiviral constituents, berries could be an alternative source for managing viral infections. In this review, we provide insights into how berry derived components inhibit viral infection and their clinical usefulness in viral disease management.


Subject(s)
Fruit , Virus Diseases , Anthocyanins , Humans , Pandemics , Polyphenols/pharmacology , Virus Diseases/drug therapy , Virus Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...