Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(21): 21923-21934, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37917940

ABSTRACT

Graphene oxide (GO) membranes are known to have a complex morphology that depends on the degree of oxidation of the graphene flake and the membrane preparation technique. In this study, using Grand Canonical Monte Carlo simulations, we investigate the mechanism of swelling of GO membranes exposed to different relative humidity (RH) values and show how this is intimately related to the graphene surface chemistry. We show that the structure of the GO membrane changes while the membrane adsorbs water from the environment and that graphene oxide flakes become charged as the membrane is loaded with water and swells. A detailed comparison between simulation and experimental adsorption data reveals that the flake surface charge drives the water adsorption mechanism at low RH when the membrane topology is still disordered and the internal pores are small and asymmetric. As the membrane is exposed to higher RH (80%), the flake acquires more surface charge as more oxide groups deprotonate, and the pores grow in size, yet maintain their disordered geometry. Only for very high relative humidity (98%) does the membrane undergo structural changes. At this level of humidity, the pores in the membrane become slit-like but the flake surface charge remains constant. Our results unveil a very complex mechanism of swelling and show that a single molecular model cannot fully capture the ever-changing chemistry and morphology of the membrane as it swells. Our computational procedure provides the first atomically resolved insight into the GO membrane structure of experimental samples.

2.
Nanoscale ; 14(9): 3467-3479, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35170614

ABSTRACT

Graphene-based nanochannels are a popular choice in emerging nanofluidics applications because of their tunable and nanometer-scale channels. In this work, molecular dynamics (MD) simulations were employed both to (i) assess the stability of dry and hydrated graphene nanochannels and (ii) elucidate the properties of water confined in these channels, using replica-scale models with 0.66-2.38 nm channel heights. The use of flexible nanochannel walls allows the nanochannel height to relax in response to the solvation forces arising from the confined fluid and the forces between the confining surfaces, without the need for application of arbitrarily high external pressures. Dry nanochannels were found to completely collapse if the initial nanochannel height was less than 2 nm, due to attractive van der Waals interactions between the confining graphene surfaces. However, the presence of water was found to prevent total nanochannel collapse, due to repulsive hydration forces opposing the attractive van der Waals force. For nanochannel heights less than ∼1.7 nm, the confining surfaces must be relaxed to obtain accurate hydration pressures and water diffusion coefficients, by ensuring commensurability between the number of confined water layers and the channel height. For very small (∼0.7 nm), hydrated channels a pressure of 231 MPa due to the van der Waals forces was obtained. In the same system, the confined water forms a mobile, liquid monolayer with a diffusion coefficient of 4.0 × 10-5 cm2 s-1, much higher than bulk liquid water. Although this finding conflicts with most classical MD simulations, which predict in-plane order and arrested dynamics, it is supported by experiments and recently published first-principles MD simulations. Classical simulations can therefore be used to predict the properties of water confined in sub-nanometre graphene channels, providing sufficiently realistic molecular models and accurate intermolecular potentials are employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...