Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 871: 162066, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36773901

ABSTRACT

Flood susceptibility maps are useful tool for planners and emergency management professionals in the early warning and mitigation stages of floods. In this study, Sentinel-1 dB radar images, which provide Synthetic-Aperture Radar (SAR) data were used to delineate flooded and non-flooded locations. 12 input parameters, including elevation, lithology, drainage density, rainfall, Normalized Difference Vegetation Index (NDVI), curvature, ground slope, Stream Power Index (SPI), Topographic Wetness Index (TWI), soil, Land Use Land Cover (LULC), and distance from the river, were selected for model development. The importance of each input parameter on flood occurrences was assessed via the Mutual Information (MI) technique. Several machine learning models, including Radial Basis Function (RBF), and three hybrid models of Bagging (BA-RBF), Random Committee (RC-RBF), and Random Subspace (RSS-RBF), were developed to delineate flood susceptibility areas at Goorganrood watershed, Iran. The performance of each model was evaluated using several error indicators, including correlation coefficient (r), Nash Sutcliffe Efficiency (NSE), Mean Absolute Error (MSE), Root Mean Square Error (RMSE), and the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC). The results showed that the hybrid techniques enhanced the modeling performance of the standalone model, and generally, all hybrid models are more accurate than the standalone model. Although all developed models have performed well, RC-RBF outperforms all of them (AUC = 0.997), followed by BA-RBF (AUC = 0.996), RSS-RBF (AUC = 0.992), and RBF (AUC = 0.975). Generally, about 12 % of the study area has high and very high susceptibility to future flood occurrences.

2.
Environ Monit Assess ; 191(2): 67, 2019 Jan 12.
Article in English | MEDLINE | ID: mdl-30637530

ABSTRACT

Bivariate frequency analysis of extreme rainfall and runoff is crucial for water resource planning and management in a river basin. This study is aimed at accounting for uncertainties in bivariate analysis of extreme rainfall-runoff frequency in the Taleghan watershed, one of the major watersheds in northern Iran, using copulas. Two types of paired rainfall and runoff data, including annual maximum series (AMS) and peaks over threshold (POT) are adopted to investigate the uncertainties that arose due to the input data. The Cramer von-Mises goodness-of-fit test and Akaike information criteria (AIC) reveal that the Student's t copula is the best-fit copula for PAMS-QAMS with Gaussian-Pearson III (P3) margins, while the Plackett copula is the best-fit copula for PPOT-QPOT with generalized Pareto (GPAR-GPAR) margins. A nonparametric bootstrapping method for sampling from p-level curves is established to investigate the effects of univariate and bivariate models selection and uncertainties induced by input data. The results indicated that the sampling uncertainty reduces POT data compared to AMS data due to the increased sample size. However, the parameterization uncertainty of the POT data increases because of the weaker dependence structure between rainfall and runoff for the POT data. The results also reveal that the larger sampling uncertainties are associated with higher p-level curves for both AMS and POT data which are induced by lower data density in the upper tail. For the study area, the input-data uncertainty is most significant in bivariate rainfall-runoff frequency analysis and quantile estimation, while the uncertainty induced by probabilistic model selection is least significant.


Subject(s)
Environmental Monitoring/methods , Rain , Water Movements , Iran , Models, Statistical , Rivers , Uncertainty , Water Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...