Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067888

ABSTRACT

The primary objective of this study is to develop an advanced, automated system for the early detection and classification of leaf diseases in potato plants, which are among the most cultivated vegetable crops worldwide. These diseases, notably early and late blight caused by Alternaria solani and Phytophthora infestans, significantly impact the quantity and quality of global potato production. We hypothesize that the integration of Vision Transformer (ViT) and ResNet-50 architectures in a new model, named EfficientRMT-Net, can effectively and accurately identify various potato leaf diseases. This approach aims to overcome the limitations of traditional methods, which are often labor-intensive, time-consuming, and prone to inaccuracies due to the unpredictability of disease presentation. EfficientRMT-Net leverages the CNN model for distinct feature extraction and employs depth-wise convolution (DWC) to reduce computational demands. A stage block structure is also incorporated to improve scalability and sensitive area detection, enhancing transferability across different datasets. The classification tasks are performed using a global average pooling layer and a fully connected layer. The model was trained, validated, and tested on custom datasets specifically curated for potato leaf disease detection. EfficientRMT-Net's performance was compared with other deep learning and transfer learning techniques to establish its efficacy. Preliminary results show that EfficientRMT-Net achieves an accuracy of 97.65% on a general image dataset and 99.12% on a specialized Potato leaf image dataset, outperforming existing methods. The model demonstrates a high level of proficiency in correctly classifying and identifying potato leaf diseases, even in cases of distorted samples. The EfficientRMT-Net model provides an efficient and accurate solution for classifying potato plant leaf diseases, potentially enabling farmers to enhance crop yield while optimizing resource utilization. This study confirms our hypothesis, showcasing the effectiveness of combining ViT and ResNet-50 architectures in addressing complex agricultural challenges.


Subject(s)
Solanum tuberosum , Agriculture , Crops, Agricultural , Culture , Plant Diseases , Plant Leaves
2.
Diagnostics (Basel) ; 13(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37568946

ABSTRACT

Computed tomography (CT) scans, or radiographic images, were used to aid in the early diagnosis of patients and detect normal and abnormal lung function in the human chest. However, the diagnosis of lungs infected with coronavirus disease 2019 (COVID-19) was made more accurately from CT scan data than from a swab test. This study uses human chest radiography pictures to identify and categorize normal lungs, lung opacities, COVID-19-infected lungs, and viral pneumonia (often called pneumonia). In the past, several CAD systems using image processing, ML/DL, and other forms of machine learning have been developed. However, those CAD systems did not provide a general solution, required huge hyper-parameters, and were computationally inefficient to process huge datasets. Moreover, the DL models required high computational complexity, which requires a huge memory cost, and the complexity of the experimental materials' backgrounds, which makes it difficult to train an efficient model. To address these issues, we developed the Inception module, which was improved to recognize and detect four classes of Chest X-ray in this research by substituting the original convolutions with an architecture based on modified-Xception (m-Xception). In addition, the model incorporates depth-separable convolution layers within the convolution layer, interlinked by linear residuals. The model's training utilized a two-stage transfer learning process to produce an effective model. Finally, we used the XgBoost classifier to recognize multiple classes of chest X-rays. To evaluate the m-Xception model, the 1095 dataset was converted using a data augmentation technique into 48,000 X-ray images, including 12,000 normal, 12,000 pneumonia, 12,000 COVID-19 images, and 12,000 lung opacity images. To balance these classes, we used a data augmentation technique. Using public datasets with three distinct train-test divisions (80-20%, 70-30%, and 60-40%) to evaluate our work, we attained an average of 96.5% accuracy, 96% F1 score, 96% recall, and 96% precision. A comparative analysis demonstrates that the m-Xception method outperforms comparable existing methods. The results of the experiments indicate that the proposed approach is intended to assist radiologists in better diagnosing different lung diseases.

3.
Diagnostics (Basel) ; 13(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37189539

ABSTRACT

Hypertensive retinopathy (HR) is a serious eye disease that causes the retinal arteries to change. This change is mainly due to the fact of high blood pressure. Cotton wool patches, bleeding in the retina, and retinal artery constriction are affected lesions of HR symptoms. An ophthalmologist often makes the diagnosis of eye-related diseases by analyzing fundus images to identify the stages and symptoms of HR. The likelihood of vision loss can significantly decrease the initial detection of HR. In the past, a few computer-aided diagnostics (CADx) systems were developed to automatically detect HR eye-related diseases using machine learning (ML) and deep learning (DL) techniques. Compared to ML methods, the CADx systems use DL techniques that require the setting of hyperparameters, domain expert knowledge, a huge training dataset, and a high learning rate. Those CADx systems have shown to be good for automating the extraction of complex features, but they cause problems with class imbalance and overfitting. By ignoring the issues of a small dataset of HR, a high level of computational complexity, and the lack of lightweight feature descriptors, state-of-the-art efforts depend on performance enhancement. In this study, a pretrained transfer learning (TL)-based MobileNet architecture is developed by integrating dense blocks to optimize the network for the diagnosis of HR eye-related disease. We developed a lightweight HR-related eye disease diagnosis system, known as Mobile-HR, by integrating a pretrained model and dense blocks. To increase the size of the training and test datasets, we applied a data augmentation technique. The outcomes of the experiments show that the suggested approach was outperformed in many cases. This Mobile-HR system achieved an accuracy of 99% and an F1 score of 0.99 on different datasets. The results were verified by an expert ophthalmologist. These results indicate that the Mobile-HR CADx model produces positive outcomes and outperforms state-of-the-art HR systems in terms of accuracy.

4.
Healthcare (Basel) ; 11(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36981494

ABSTRACT

In recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia. First, a pre-processing method based on a Gaussian filter and logarithmic operator is applied to input chest X-ray (CXR) images to improve the poor-quality images by enhancing the contrast, reducing the noise, and smoothing the image. Second, robust features are extracted from each enhanced chest X-ray image using a Convolutional Neural Network (CNNs) transformer and an optimal collection of grey-level co-occurrence matrices (GLCM) that contain features such as contrast, correlation, entropy, and energy. Finally, based on extracted features from input images, a random forest machine learning classifier is used to classify images into three classes, such as COVID-19, pneumonia, or normal. The predicted output from the model is combined with Gradient-weighted Class Activation Mapping (Grad-CAM) visualisation for diagnosis. (3) Results: Our work is evaluated using public datasets with three different train-test splits (70-30%, 80-20%, and 90-10%) and achieved an average accuracy, F1 score, recall, and precision of 97%, 96%, 96%, and 96%, respectively. A comparative study shows that our proposed method outperforms existing and similar work. The proposed approach can be utilised to screen COVID-19-infected patients effectively. (4) Conclusions: A comparative study with the existing methods is also performed. For performance evaluation, metrics such as accuracy, sensitivity, and F1-measure are calculated. The performance of the proposed method is better than that of the existing methodologies, and it can thus be used for the effective diagnosis of the disease.

5.
Sensors (Basel) ; 22(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36560036

ABSTRACT

Although deep learning-based techniques for salient object detection have considerably improved over recent years, estimated saliency maps still exhibit imprecise predictions owing to the internal complexity and indefinite boundaries of salient objects of varying sizes. Existing methods emphasize the design of an exemplary structure to integrate multi-level features by employing multi-scale features and attention modules to filter salient regions from cluttered scenarios. We propose a saliency detection network based on three novel contributions. First, we use a dense feature extraction unit (DFEU) by introducing large kernels of asymmetric and grouped-wise convolutions with channel reshuffling. The DFEU extracts semantically enriched features with large receptive fields and reduces the gridding problem and parameter sizes for subsequent operations. Second, we suggest a cross-feature integration unit (CFIU) that extracts semantically enriched features from their high resolutions using dense short connections and sub-samples the integrated information into different attentional branches based on the inputs received for each stage of the backbone. The embedded independent attentional branches can observe the importance of the sub-regions for a salient object. With the constraint-wise growth of the sub-attentional branches at various stages, the CFIU can efficiently avoid global and local feature dilution effects by extracting semantically enriched features via dense short-connections from high and low levels. Finally, a contour-aware saliency refinement unit (CSRU) was devised by blending the contour and contextual features in a progressive dense connected fashion to assist the model toward obtaining more accurate saliency maps with precise boundaries in complex and perplexing scenarios. Our proposed model was analyzed with ResNet-50 and VGG-16 and outperforms most contemporary techniques with fewer parameters.


Subject(s)
Neural Networks, Computer
6.
Comput Biol Med ; 149: 105995, 2022 10.
Article in English | MEDLINE | ID: mdl-36055157

ABSTRACT

BACKGROUND: Breast tumor segmentation in B-mode ultrasound imaging is important for analyzing, identifying, and diagnosing tumors. The level set is an approach most widely used in breast segmentation, and the refinement is still in progress. However, its effectiveness is harmed by a dearth of semantic information. On the other hand, deep networks contain rich semantic information but loss much influential low-level details. METHOD: This paper proposes a novel deep-feature embedded level set group to exploit semantically enriched features for breast tumor segmentation. First, a UNet-based network is trained to extract different features at different stages. Each stage has unique features depiction. Then, a novel level-set method is integrated at the end of each stage to approach more accurate and precise features maps. A new feature-discriminator is devised in the energy function of the level set method to refine the low confidence pixels at the boundaries. Lastly, the outputs of the level set method at different stages are incorporated into final feature maps to further empower the segmentation process. Two datasets comprising 349 breast ultrasound images from various hospitals have been utilized to assess the proposed approach's performance. The model's effectiveness is estimated on different metrics, including Accuracy, Sensitivity or True Positive rate, Specificity or True Negative rate, False Positive rate Dice, and IoU values for both datasets. Furthermore, the efficiency of the model is investigated by performing a comparison with several state-of-the-art classic segmentation methods and deep learning methods. RESULT: The proposed method outperformed segmenting breast ultrasound tumors in terms of Dice and IoU for datasets A and B (with p-value < 0.005 against compared methods). Additionally, the performance of the proposed approach is evaluated using the Area Under Receiver Operating Characteristics curve (AUC) and Mean Absolute Error (MAE). Our findings indicate that the proposed method seems to gain superiority over other methods by obtaining a lower MAE rate with the highest value of the AUC. CONCLUSION: Experiments determine that our method has obtained the best cut-off to deal with the noticeable glitches present in other approaches and generates more accurate segmentation results for tumors in complex images. Hence, the results confirm the proposed method's effectiveness compared to classic segmentation methods over ultrasound images with blurry boundaries, noise, and intensity inhomogeneity. Moreover, our approach gives unprecedented prediction accuracy and similarity for malignant tumors.


Subject(s)
Breast Neoplasms , Image Processing, Computer-Assisted , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted/methods , Ultrasonography , Ultrasonography, Mammary
SELECTION OF CITATIONS
SEARCH DETAIL
...