Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(2): 103306, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228049

ABSTRACT

Gumboro virus is one of the most dangerous immunosuppressant viruses that infect chickens and causes massive financial losses worldwide. The current study aims to conduct a molecular characterization of chicken farms for the infectious bursal disease virus (IBDV). Based on postmortem (PM) lesions, 125 bursal samples from 25 farms were collected from clinically diseased commercial chicken farms with increased mortality and suspected Gumboro virus infection. Pooled bursal samples from suspected IBD-vaccinated flocks were tested for IBDV by reverse transcriptase polymerase chain reaction (RT-PCR). Fifteen out of 25 pooled specimens were found positive for IBDV, with a 60% detection rate, and confirmed positive for very virulent IBDV (vvIBDV) by sequence analysis. Nucleotide phylogenetic analysis of VP1 and VP2 genes was employed to compare the 5 chosen isolates with strains representing different governorates in Egypt during 2022. All strains were clustered with vvIBDV with no evidence of reassortment in the VP1 gene. The VP1 and VP2 genes are divided into groups (I, II). The strains in our study were related to group II, and it acquired a new mutation in the VP2 gene that clustered it into new subgroup B. By mutation analysis, the VP2 gene of all strains had a characteristic mutation to vvIBDV. It acquired new mutations in HVRs compared with HK46 in Y220F, A222T/V in all strains in our study, and Q221K that was found in IBD-EGY-AH5 and AH2 in the loop PBC in addition to G254S in all strains in our study and Q249k that found in IBD-EGY-AH1 and AH3 in the loop PDE. These mutations are important in the virulency and antigenicity of the virus. The VP1 had 242E, 390M, and 393D which were characteristic of vvIBDV and KpnI restriction enzyme (777GGTAC/C782) in addition to a new mutation (F243Y and N383H) in IBD-EGY-AH1 and AH4 strains. According to the current study, the strains were distinct from the vaccinal strain; they could be responsible for the most recent IBDV outbreaks observed in flocks instead of received vaccinations. The current study highlighted the importance of molecular monitoring to keep up to date on the circulating IBDV for regular evaluation of commercial vaccination programs against circulating field viruses.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Phylogeny , Birnaviridae Infections/epidemiology , Birnaviridae Infections/veterinary , Poultry Diseases/prevention & control , Viral Structural Proteins/genetics
2.
Emerg Infect Dis ; 23(6): 1048-1051, 2017 06.
Article in English | MEDLINE | ID: mdl-28518040
3.
J Gen Virol ; 97(12): 3193-3204, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27902339

ABSTRACT

Highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry and continues to pose a pandemic threat. Studying the progressive genetic changes in A/H5N1 after long-term circulation in poultry may help us to better understand A/H5N1 biology in birds. A/H5N1 clade 2.2.1.1 antigenic drift viruses have been isolated from vaccinated commercial poultry in Egypt. They exhibit a peculiar stepwise accumulation of glycosylation sites (GS) in the haemagglutinin (HA) with viruses carrying, beyond the conserved 5 GS, additional GS at amino acid residues 72, 154, 236 and 273 resulting in 6, 7, 8 or 9 GS in the HA. Available information about the impact of glycosylation on virus fitness and pathobiology is mostly derived from mammalian models. Here, we generated recombinant viruses imitating the progressive acquisition of GS in HA and investigated their biological relevance in vitro and in vivo. Our in vitro results indicated that the accumulation of GS correlated with increased glycosylation, increased virus replication, neuraminidase activity, cell-to-cell spread and thermostability, however, strikingly, without significant impact on virus escape from neutralizing antibodies. In vivo, glycosylation modulated virus virulence, tissue tropism, replication and chicken-to-chicken transmission. Predominance in the field was towards viruses with hyperglycosylated HA. Together, progressive glycosylation of the HA may foster persistence of A/H5N1 by increasing replication, stability and bird-to-bird transmission without significant impact on antigenic drift.


Subject(s)
Antigenic Variation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H5N1 Subtype/physiology , Influenza in Birds/transmission , Poultry Diseases/virology , Virus Replication , Amino Acid Motifs , Animals , Chickens , Egypt , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/virology , Phylogeny , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...