Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(31): 21502-21509, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37469969

ABSTRACT

With the emergence of the energy crisis and the development of flexible electronics, there is an urgent need to develop new reliable energy supply devices with good flexibility, stable energy storage, and efficient energy transfer. Porous carbon materials have been proven to enhance the efficiency of ion transport, as the nanospaces within them serve as pathways for mass transport. However, they have been mainly investigated in the electrodes of supercapacitors and batteries. To elucidate their function in the solid electrolytes, we introduced C60-based carbonized nanospheres into PVA/TEMPO-cellulose-based hydrogels by exploiting the electrostatic interaction between the carboxyl groups of TEMPO-cellulose and the carbonized nanospheres. The obtained hydrogels were further utilized as the solid electrolytes for the supercapacitors. Through a comprehensive investigation, we found that the carbonized nanospheres can act as physical crosslinking points and increase the maximum stress of the hydrogel from 0.12 to 0.31 MPa without affecting the maximum strain. In addition, the nanospaces of the carbonized nanospheres provided a pathway for ion transport, improving the capacitance of the supercapacitor from 344.83 to 369.18 mF cm-2 at 0.5 mA cm-2. The capacitance retention was also improved from 53% to 62% at 10 mA cm-2. Collectively, this study provides new insights into the application of carbonized materials to solid electrolytes.

2.
J Oleo Sci ; 72(1): 11-32, 2023.
Article in English | MEDLINE | ID: mdl-36624057

ABSTRACT

Nanoarchitectonics integrates nanotechnology with numerous scientific disciplines to create innovative and novel functional materials from nano-units (atoms, molecules, and nanomaterials). The objective of nanoarchitectonics concept is to develop functional materials and systems with rationally architected functional units. This paper explores the progress and potential of this field using biomass nanoarchitectonics for supercapacitor applications as examples of energetic materials and devices. Strategic design of nanoporous carbons that exhibit ultra-high surface area and hierarchically pore architectures comprising micro- and mesopore structure and controlled pore size distributions are of great significance in energy-related applications, including in high-performance supercapacitors, lithium-ion batteries, and fuel cells. Agricultural wastes or natural biomass are lignocellulosic materials and are excellent carbon sources for the preparation of hierarchically porous carbons with an ultra-high surface area that are attractive materials in high-performance supercapacitor applications due to high electrical and ion conduction, extreme porosity, and exceptional chemical and thermal stability. In this review, we will focus on the latest advancements in the fabrication of hierarchical porous carbon materials from different biomass by chemical activation method. Particularly, the importance of biomass-derived ultra-high surface area porous carbons, hierarchical architectures with interconnected pores in high-energy storage, and high-performance supercapacitors applications will be discussed. Finally, the current challenges and outlook for the further improvement of carbon materials derived from biomass or agricultural wastes in the advancements of supercapacitor devices will be discussed.


Subject(s)
Carbon , Nanostructures , Biomass , Electricity , Nanotechnology
3.
Materials (Basel) ; 15(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36499823

ABSTRACT

The electrical double-layer supercapacitance performance of the nanoporous carbons prepared from the Phyllanthus emblica (Amala) seed by chemical activation using the potassium hydroxide (KOH) activator is reported. KOH activation was carried out at different temperatures (700-1000 °C) under nitrogen gas atmosphere, and in a three-electrode cell set-up the electrochemical measurements were performed in an aqueous 1 M sulfuric acid (H2SO4) solution. Because of the hierarchical pore structures with well-defined micro- and mesopores, Phyllanthus emblica seed-derived carbon materials exhibit high specific surface areas in the range of 1360 to 1946 m2 g-1, and the total pore volumes range from 0.664 to 1.328 cm3 g-1. The sample with the best surface area performed admirably as the supercapacitor electrode-material, achieving a high specific capacitance of 272 F g-1 at 1 A g-1. Furthermore, it sustained 60% capacitance at a high current density of 50 A g-1, followed by a remarkably long cycle-life of 98% after 10,000 subsequent charging/discharging cycles, demonstrating the electrode's excellent rate-capability. These results show that the Phyllanthus emblica seed would have significant possibilities as a sustainable carbon-source for the preparing high-surface-area activated-carbons desired in high-energy-storage supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...