Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Pharmacol Transl Sci ; 5(9): 724-734, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36110381

ABSTRACT

Drug resistance is a leading cause for the failure of cancer treatments. Plasticity of cancer cells to acquire stem cell-like properties enables them to escape drug toxicity through different adaptive mechanisms. Eliminating cancer stem cells (CSCs) can potentially improve treatment outcomes for patients. To determine the role of CSCs in resistance of colorectal cancer cells to targeted therapies and identify treatment strategies, we treated spheroids of BRAFmut and KRASmut colorectal cancer cells with inhibitors of the mitogen-activated protein kinase pathway and studied resistance mechanisms through gene and protein expression analyses. We found that treatments activated several oncogenic pathways and expression of CSC markers CD166 and ALDH1A3. We identified a specific combination treatment using trametinib and mithramycin A to simultaneously inhibit the CSC phenotype and activities of several pathways in cancer cells. This study demonstrates the feasibility of therapeutic targeting of CSCs as a strategy to block tumorigenic activities of cancer cells.

2.
SLAS Technol ; 26(3): 255-264, 2021 06.
Article in English | MEDLINE | ID: mdl-33880947

ABSTRACT

Resistance to single-agent chemotherapy and molecularly targeted drugs prevents sustained efficacy of treatments. To address this challenge, combination drug treatments have been used to improve outcomes for patients. Potential toxicity of combination treatments is a major concern, however, and has led to the failure of several clinical trials in different cancers. The use of cell-based models of normal tissues in preclinical studies enables testing and identifying toxic effects of drug combinations and facilitates an informed decision-making process for advancing the treatments to animal models and clinical trials. Recently, we established that combinations of molecular inhibitors of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase-protein kinase B (PI3K/Akt) pathways effectively and synergistically inhibit growth of BRAFmut and KRASmut colorectal tumor spheroids by blocking feedback signaling of downstream kinase pathways. These pathways are important for cell proliferation, however, and their simultaneous inhibition may cause toxicity to normal cells. We used a cellular spheroid model to study toxicities of drug combinations to human bone marrow and colon. Our results indicated that MAPK and PI3K/Akt inhibitors used simultaneously were only moderately toxic to bone marrow cells but significantly more toxic to colon cells. Our molecular analysis of proliferative cell activities and housekeeping proteins further corroborated these results. Overall, our approach to identify toxic effects of combinations of cancer drugs to normal cells in three-dimensional cultures will facilitate more informed treatment selections for subsequent animal studies.


Subject(s)
Antineoplastic Agents , Phosphatidylinositol 3-Kinases , Animals , Antineoplastic Agents/toxicity , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/toxicity , Signal Transduction
3.
ACS Pharmacol Transl Sci ; 3(6): 1176-1187, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33344895

ABSTRACT

Single-agent drug treatment of KRASmut colorectal cancers is often ineffective because the activation of compensatory signaling pathways leads to drug resistance. To mimic cyclic chemotherapy treatments of patients, we showed that intermittent treatments of 3D tumor spheroids of KRASmut colorectal cancer cells with inhibitors of mitogen-activated protein kinase (MAPK) signaling pathway temporarily suppressed growth of spheroids. However, the efficacy of successive single-agent treatments was significantly reduced. Molecular analysis showed compensatory activation of PI3K/AKT and STAT kinases and EGFR family proteins. To overcome the adaptation of cancer cells to MAPK pathway inhibitors, we treated tumor spheroids with a combination of MEK and EGFR inhibitors. This approach significantly blocked signaling of MAPK and PI3K/AKT pathways and prevented the growth of spheroids, but it was not effective against STAT signaling. Although the combination treatment blocked the matrix invasion of DLD1 cells, additional treatments with STAT inhibitors were necessary to prevent invasiveness of HCT116 cells. Overall, our drug resistance model elucidated the mechanisms of treatment-induced growth and invasiveness of cancer cells and allowed design-driven testing and identifying of effective treatments to suppress these phenotypes.

4.
Biomaterials ; 238: 119853, 2020 04.
Article in English | MEDLINE | ID: mdl-32062146

ABSTRACT

Fibroblasts are a critical component of tumor microenvironments and associate with cancer cells physically and biochemically during different stages of the disease. Existing cell culture models to study interactions between fibroblasts and cancer cells lack native tumor architecture or scalability. We developed a scalable organotypic model by robotically encapsulating a triple negative breast cancer (TNBC) cell spheroid within a natural extracellular matrix containing dispersed fibroblasts. We utilized an established CXCL12 - CXCR4 chemokine-receptor signaling in breast tumors to validate our model. Using imaging techniques and molecular analyses, we demonstrated that CXCL12-secreting fibroblasts have elevated activity of RhoA/ROCK/myosin light chain-2 pathway and rapidly and significantly contract collagen matrices. Signaling between TNBC cells and CXCL12-producing fibroblasts promoted matrix invasion of cancer cells by activating oncogenic mitogen-activated protein kinase signaling, whereas normal fibroblasts significantly diminished TNBC cell invasiveness. We demonstrated that disrupting CXCL12 - CXCR4 signaling using a molecular inhibitor significantly inhibited invasiveness of cancer cells, suggesting blocking of tumor-stromal interactions as a therapeutic strategy especially for cancers such as TNBC that lack targeted therapies. Our organotypic tumor model mimics native solid tumors, enables modular addition of different stromal cells and extracellular matrix proteins, and allows high throughput compound screening against tumor-stromal interactions to identify novel therapeutics.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Breast , Cell Line, Tumor , Fibroblasts , Humans , Neoplasm Invasiveness , Tumor Microenvironment
5.
BMC Cancer ; 20(1): 4, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898540

ABSTRACT

BACKGROUND: Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. METHODS: We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. RESULTS: Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. CONCLUSIONS: We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Phytochemicals/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , Phytochemicals/chemistry , Protein Kinase Inhibitors/chemistry , Proteome , Proteomics/methods , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/metabolism , Zebrafish
6.
Transl Oncol ; 12(3): 404-416, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30550927

ABSTRACT

Adaptive drug resistance is a major obstacle to successful treatment of colorectal cancers. Physiologic tumor models of drug resistance are crucial to understand mechanisms of treatment failure and improve therapy by developing new therapeutics and treatment strategies. Using our aqueous two-phase system microtechnology, we developed colorectal tumor spheroids and periodically treated them with sub-lethal concentrations of three Mitogen Activated Kinase inhibitors (MEKi) used in clinical trials. We used long-term, periodic treatment and recovery of spheroids to mimic cycles of clinical chemotherapy and implemented a growth rate metric to quantitatively assess efficacy of the MEKi during treatment. Our results showed that efficacy of the MEKi significantly reduced with increased treatment cycles. Using a comprehensive molecular analysis, we established that resistance of colorectal tumor spheroids to the MEKi developed through activation of the PI3K/AKT/mTOR pathway. We also showed that other potential feedback mechanisms, such as STAT3 activation or amplified B-RAF, did not account for resistance to the MEKi. We combined each of the three MEKi with a PI3K/mTOR inhibitor and showed that the combination treatments synergistically blocked resistance to the MEKi. Importantly, and unlike the individual inhibitors, we demonstrated that synergistic concentrations of combinations of MEK and PI3K/mTOR inhibitors effectively inhibited growth of colorectal tumor spheroids in long-term treatments. This proof-of-concept study to model treatment-induced drug resistance of cancer cells using 3D cultures offers a unique approach to identify underlying molecular mechanisms and develop effective treatments.

7.
SLAS Discov ; 22(5): 507-515, 2017 06.
Article in English | MEDLINE | ID: mdl-28324660

ABSTRACT

Spheroids of cancer cells represent a physiologic model of solid tumors for cancer drug screening. Despite this known benefit, difficulties with generating large quantities of uniformly sized spheroids in standard plates, individually addressing spheroids with drug compounds, and quantitatively analyzing responses of cancer cells have hindered the use of spheroids in high-throughput screening applications. Recently, we addressed this challenge by using an aqueous two-phase system technology to generate a spheroid within an aqueous drop immersed in a second, immiscible aqueous phase. Integrating this approach with robotics resulted in convenient formation, maintenance, and drug treatment of spheroids. Here, we demonstrate the feasibility of high-throughput compound screening against colon cancer spheroids using 25 anticancer compounds. Using a strictly standardized mean difference and based on a preliminary testing with each compound, we select effective compounds for further dose-response testing. Finally, we use molecular inhibitors to target upregulated protein kinases and use them for drug combination studies against spheroids. We quantitatively analyze the combination treatment results using statistical metrics to identify synergy between pairs of inhibitors in compromising viability of colon cancer cells. This study demonstrates the utility of our spheroid culture technology for identification of effective drug compounds, dose-response analysis, and combination drug treatments.


Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Spheroids, Cellular/drug effects , Cell Culture Techniques/methods , Cell Line, Tumor , Drug Combinations , Drug Evaluation, Preclinical/methods , Drug Screening Assays, Antitumor/methods , HT29 Cells , High-Throughput Screening Assays/methods , Humans , Up-Regulation/drug effects
8.
Mol Pharm ; 13(11): 3724-3735, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27653969

ABSTRACT

Spheroids present a biologically relevant three-dimensional model of avascular tumors and a unique tool for discovery of anticancer drugs. Despite being used in research laboratories for several decades, spheroids are not routinely used in the mainstream drug discovery pipeline primarily due to the difficulty of mass-producing uniformly sized spheroids and intense labor involved in handling, drug treatment, and analyzing spheroids. We overcome this barrier using a polymeric aqueous two-phase microtechnology to robotically microprint spheroids of well-defined size in standard 384-microwell plates. We use different cancer cells and show that resulting spheroids grow over time and display characteristic features of solid tumors. We demonstrate the feasibility of robotic, high-throughput screening of 25 standard chemotherapeutics and molecular inhibitors against tumor spheroids of three different cancer cell lines. This screening uses over 7000 spheroids to elicit high quality dose-dependent drug responses from spheroids. To quantitatively compare performance of different drugs, we employ a multiparametric scoring system using half-maximum inhibitory concentration (IC50), maximum inhibition (Emax), and area under the dose-response curve (AUC) to take into account both potency and efficacy parameters. This approach allows us to identify several compounds that effectively inhibit growth of spheroids and compromise cellular viability, and distinguish them from moderately effective and ineffective drugs. Using protein expression analysis, we demonstrate that spheroids generated with the aqueous two-phase microtechnology reliably resolve molecular targets of drug compounds. Incorporating this low-cost and convenient-to-use tumor spheroid technology in preclinical drug discovery will make compound screening with realistic tumor models a routine laboratory technique prior to expensive and tedious animal tests to dramatically improve testing throughput and efficiency and reduce costs of drug discovery.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical/methods , Spheroids, Cellular/chemistry , Animals , Antineoplastic Agents/chemistry , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...