Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1240291, 2023.
Article in English | MEDLINE | ID: mdl-37693342

ABSTRACT

Background and purpose: Hypertension (HTN) is a multifactorial chronic disease that poses a significant global health burden and is associated with increased mortality rates. It often coexists with other conditions, such as cardiovascular, liver, and renal diseases, and has a strong association with diabetes mellitus. Insulin resistance and endothelial dysfunction commonly occur in individuals with both HTN and type 2 diabetes mellitus (T2DM). Genetic factors, along with environmental and pathological factors, play a role in the development of HTN. Recent studies have revealed the influence of single nucleotide polymorphisms (SNPs) in various genes on HTN. In this study, we aimed to investigate the genetic polymorphism of angiotensinogen (AGT) T174M (rs4762) and its association with HTN in diabetic patients. Methods: A total of 300 participants were enrolled in this study and divided into three groups: control, hypertensive, and hypertensive diabetic. Blood samples were collected, and predetermined biochemical parameters were assessed. Genotyping of the AGT T174M (rs4762) gene was conducted using Tetra ARMS PCR with specific primers. Results: The study findings revealed a significant association between AGT T174M (rs4762) genotype and HTN in diabetic patients within the Pakistani population. The C/T genotype of AGT T174M (rs4762) was found to be significant in both the hypertensive and hypertensive diabetic participants compared to the control group. This genotype was identified as a risk factor for developing HTN in both the hypertensive and hypertensive diabetic participants. Conclusion: This study demonstrates a significant association between AGT T174M (rs4762) genetic polymorphism and HTN in diabetic patients. The C/T genotype of AGT T174M (rs4762) may serve as a potential marker for identifying individuals at risk of developing HTN, specifically in the hypertensive and hypertensive diabetic populations. Further research is warranted to elucidate the underlying mechanisms and validate these findings in larger cohorts.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Angiotensinogen/genetics , Polymorphism, Single Nucleotide , Hypertension/complications , Hypertension/genetics
2.
Metabolites ; 13(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837870

ABSTRACT

Myocardial infarction (MI) is a cardiovascular disease that occurs due to the blockage of the coronary artery. Subsequently, cardiac muscles receive a lower oxygen supply, which leads to the death of cardiac muscles. The etiology of MI is linked to various environmental, occupational, and genetic factors. Various studies have been conducted on the polymorphism of genes involved in MI. Previous studies have shown that different variants of the methylene tetrahydrofolate reductase (MTHFR) gene are involved in causing MI by altering the metabolism of folate and homocysteine. However, the genetic polymorphism of MTHFR C677T (rs1801133) and its association with MI in the presence of diabetes mellitus (DM) as a risk factor still needs to be investigated. This study recruited 300 participants who were divided into three groups, i.e., the control, MI, and MI-DM. The blood samples collected from the study participants were subjected to various biochemical tests and their clinical parameters were monitored. MTHFR C677T (rs1801133) genotyping was performed by Tetra ARMS PCR using predetermined primers. The MTHFR C677T (rs1801133) polymorphism was associated with MI in the presence of DM as a risk factor among the participants. The MTHFR C677T (rs1801133) T/T homozygous genotype was found to be significant among MI patients in the presence of DM as a risk factor.

3.
Metabolites ; 12(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36557328

ABSTRACT

Angiotensinogen (AGT) is one of the most significant enzymes of the renin-angiotensin-aldosterone system (RAAS) which is involved in the regulation and maintenance of blood pressure. AGT is involved in the production of angiotensin I which is then converted into angiotensin II that leads to renal homeostasis. However, various genetic polymorphisms in AGT have been discovered in recent times which have shown an association with various diseases. Genetic polymorphism increases the level of circulating AGT in blood which exaggerates the effects produced by AGT. The associated diseases occur due to various effects produced by increased AGT levels. Several cardiovascular diseases including myocardial infarction, coronary heart disease, heart failure, hypertrophy, etc. are associated with AGT polymorphism. Other diseases such as depression, obesity, diabetic nephropathy, pre-eclampsia, and liver injury are also associated with some variants of AGT gene. The most common variants of AGT polymorphism are M235T and T174M. The two variants are associated with many diseases. Some other variants such as G-217A, A-6G, A-20C and G-152A, are also present but they are not as significant as that of M235T and T174M variants. These variants increase the level of circulating AGT and are associated with prevalence of different diseases. These diseases occur through various pathological pathways, but the initial reason remains the same, i.e., increased level of AGT in the blood. In this article, we have majorly focused on how genetic polymorphism of different variants of AGT gene is associated with the prevalence of different diseases.

4.
J Food Biochem ; 46(9): e14228, 2022 09.
Article in English | MEDLINE | ID: mdl-35579327

ABSTRACT

Genistein, a polyphenolic isoflavone compound found abundantly in soy or soy-based products, is widely consumed in the Asian population. Genistein has poor bioavailability, to overcome this problem many advanced nano-drug delivery carrier systems are designed to enhance its water solubility and stability. However, further research is required to develop more efficient bioavailability improvement strategies. Genistein is a phytoestrogen which has been associated with reducing the risk of cancer, cardiovascular disorders, and diabetes mellitus. This plant-based bioactive compound possesses numerous biological activities such as anti-oxidant, anti-inflammatory, anti-obesity, anti-cancer, cardioprotective, and anti-diabetic activities to treat various disease states. Genistein has been used as an active therapeutic agent in many medications. Moreover, several clinical trials are in the ongoing stage to develop more efficient treatment therapies, especially for cancer treatment. This article highlights the protective and therapeutic benefits of genistein in the treatment of different ailments, and more specifically elaborates on the anti-cancer potential of genistein regarding various types of cancers. PRACTICAL APPLICATIONS: Genistein possesses versatile biological activities, including anti-diabetic, anti-inflammatory, anti-oxidant, anti-obesity, and anti-angiogenic. The most studied activity is anti-cancer. Currently, a number of pre-clinical and clinical trials are being carried out on anti-neoplastic and cytotoxic activities of genistein to develop novel therapeutic agents with excellent anti-cancer potential for the treatment of various kinds of cancer. Moreover, many bioavailability enhancement strategies have been developed to improve the bioavailability of genistein. Genistein shows significant hypoglycemic effects alone or in combination with other anti-diabetic agents. Genistein in combination with other chemotherapeutic agents is used for the treatment of prostate, bone, colorectal, glioma, breast, and bladder cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biological Availability , Genistein/pharmacology , Humans , Male , Neoplasms/drug therapy
5.
Crit Rev Clin Lab Sci ; 56(3): 182-199, 2019 05.
Article in English | MEDLINE | ID: mdl-30821184

ABSTRACT

Autophagy is an important biological mechanism involved in the regulation of numerous fundamental cellular processes that are mainly associated with cellular growth and differentiation. Autophagic pathways are vital for maintaining cellular homeostasis by enhancing the turnover of nonfunctional proteins and organelles. Neuronal cells, like other eukaryotic cells, are dependent on autophagy for neuroprotection in response to stress, but can also induce cell death in cerebral ischemia. Recent studies have demonstrated that autophagy may induce neuroprotection following acute brain injury, including ischemic stroke. However in some special circumstances, activation of autophagy can induce cell death, playing a deleterious role in the etiology and progression of ischemic stroke. Currently, there are no therapeutic options against stroke that demonstrate efficient neuroprotective abilities. In the present work, we will review the significance of autophagy in the context of ischemic stroke by first outlining its role in ischemic neuronal death. We will also highlight the potential therapeutic applications of pharmacological modulators of autophagy, including some naturally occurring polyphenolic compounds that can target this catabolic process. Our findings provide renewed insight on the mechanism of action of autophagy in stroke together with potential neuroprotective compounds, which may partially exert their function through enhancing mitochondrial function and attenuating damaging autophagic processes.


Subject(s)
Autophagy , Neuroprotection , Stroke/therapy , Animals , Brain Ischemia/metabolism , Brain Ischemia/therapy , Humans , Mice , Neurons/cytology , Neurons/physiology , Stroke/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...