Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(19): 21234-21244, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764667

ABSTRACT

Angiotensin receptor blockers (ARBs) are commonly used to treat hypertension that target the hormonal system (renin-angiotensin system (RAS)), which regulates various physiological functions in the body. ARBs work by blocking the binding of angiotensin II to its receptor, thereby preventing a rise in blood pressure. These drugs not only normalize the overactivation of RAS but also provide protective effects against cardiovascular, renal, and type 2 diabetic patients. Inappropriate RAS activity has been linked to insulin resistance of type 2 diabetes. Olmesartan, as an ARB, was found to have a beneficial role in reducing postprandial glucose levels in type 2 diabetes. However, ARBs can cause side effects, prompting a search for new compounds that have fewer adverse effects. This study explores the potential of natural metabolites, specifically eugenol, gallic acid, myricetin, p-cymene, quercetin, and kaempferol, as ARB inhibitors compared to the current standard, olmesartan. Using in silico studies, the binding affinity of these natural substances to the ARB receptor was evaluated. The results showed that myricetin and kaempferol had affinities higher than those of olmesartan, suggesting that they could serve as promising ARB inhibitors for hypertension treatment. These natural compounds could provide an alternative approach to conventional antihypertensive drugs, which may have fewer side effects. However, more research is needed to validate the efficacy and safety of these natural compounds as antihypertensive drugs. Further in vitro and in vivo studies are needed to confirm their effectiveness and safety. This study provides a promising starting point for future investigations into the potential of natural metabolites as alternative treatments for hypertension. The findings also highlight the importance of exploring natural alternative treatments for hypertension and the protective effects of ARBs on early stage type-2 diabetics.

2.
Gels ; 10(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38667658

ABSTRACT

The present study explored the effectiveness of bile-salt-based nano-vesicular carriers (bilosomes) for delivering anti-psychotic medication, Sulpiride (Su), via the skin. A response surface methodology (RSM), using a 33 Box-Behnken design (BBD) in particular, was employed to develop and optimize drug-loaded bilosomal vesicles. The optimized bilosomes were assessed based on their vesicle size, entrapment efficiency (% EE), and the amount of Sulpiride released. The Sulpiride-loaded bilosomal gel was generated by incorporating the optimized Su-BLs into a hydroxypropyl methylcellulose polymer. The obtained gel was examined for its physical properties, ex vivo permeability, and in vivo pharmacokinetic performance. The optimum Su-BLs exhibited a vesicle size of 211.26 ± 10.84 nm, an encapsulation efficiency of 80.08 ± 1.88% and a drug loading capacity of 26.69 ± 0.63%. Furthermore, the use of bilosomal vesicles effectively prolonged the release of Su over a period of twelve hours. In addition, the bilosomal gel loaded with Su exhibited a three-fold increase in the rate at which Su transferred through the skin, in comparison to oral-free Sulpiride. The relative bioavailability of Su-BL gel was almost four times as high as that of the plain Su suspension and approximately two times as high as that of the Su gel. Overall, bilosomes could potentially serve as an effective technique for delivering drugs through the skin, specifically enhancing the anti-psychotic effects of Sulpiride by increasing its ability to penetrate the skin and its systemic bioavailability, with few adverse effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...