Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Brain Sci ; 14(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275515

ABSTRACT

Tinnitus is a prevalent hearing-loss deficit manifested as a phantom (internally generated by the brain) sound that is heard as a high-frequency tone in the majority of afflicted persons. Chronic tinnitus is debilitating, leading to distress, sleep deprivation, anxiety, and even suicidal thoughts. It has been theorized that, in the majority of afflicted persons, tinnitus can be attributed to the loss of high-frequency input from the cochlea to the auditory cortex, known as deafferentation. Deafferentation due to hearing loss develops with aging, which progressively causes tonotopic regions coding for the lost high-frequency coding to synchronize, leading to a phantom high-frequency sound sensation. Approaches to tinnitus remediation that demonstrated promise include inhibitory drugs, the use of tinnitus-specific frequency notching to increase lateral inhibition to the deafferented neurons, and multisensory approaches (auditory-motor and audiovisual) that work by coupling multisensory stimulation to the deafferented neural populations. The goal of this review is to put forward a theoretical framework of a multisensory approach to remedy tinnitus. Our theoretical framework posits that due to vision's modulatory (inhibitory, excitatory) influence on the auditory pathway, a prolonged engagement in audiovisual activity, especially during daily discourse, as opposed to auditory-only activity/discourse, can progressively reorganize deafferented neural populations, resulting in the reduced synchrony of the deafferented neurons and a reduction in tinnitus severity over time.

2.
J Neurophysiol ; 130(2): 291-302, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37377190

ABSTRACT

Traditionally, pitch variation in a sound stream has been integral to music identity. We attempt to expand music's definition, by demonstrating that the neural code for musicality is independent of pitch encoding. That is, pitchless sound streams can still induce music-like perception and a neurophysiological hierarchy similar to pitched melodies. Previous work reported that neural processing of sounds with no-pitch, fixed-pitch, and irregular-pitch (melodic) patterns, exhibits a right-lateralized hierarchical shift, with pitchless sounds favorably processed in Heschl's gyrus (HG), ascending laterally to nonprimary auditory areas for fixed-pitch and even more laterally for melodic patterns. The objective of this EEG study was to assess whether sound encoding maintains a similar hierarchical profile when musical perception is driven by timbre irregularities in the absence of pitch changes. Individuals listened to repetitions of three musical and three nonmusical sound-streams. The nonmusical streams were comprised of seven 200-ms segments of white, pink, or brown noise, separated by silent gaps. Musical streams were created similarly, but with all three noise types combined in a unique order within each stream to induce timbre variations and music-like perception. Subjects classified the sound streams as musical or nonmusical. Musical processing exhibited right dominant α power enhancement, followed by a lateralized increase in θ phase-locking and spectral power. The θ phase-locking was stronger in musicians than in nonmusicians. The lateralization of activity suggests higher-level auditory processing. Our findings validate the existence of a hierarchical shift, traditionally observed with pitched-melodic perception, underscoring that musicality can be achieved with timbre irregularities alone.NEW & NOTEWORTHY EEG induced by streams of pitchless noise segments varying in timbre were classified as music-like and exhibited a right-lateralized hierarchy in processing similar to pitched melodic processing. This study provides evidence that the neural-code of musicality is independent of pitch encoding. The results have implications for understanding music processing in individuals with degraded pitch perception, such as in cochlear-implant listeners, as well as the role of nonpitched sounds in the induction of music-like perceptual states.


Subject(s)
Cochlear Implants , Music , Humans , Pitch Perception/physiology , Auditory Perception/physiology , Sound , Acoustic Stimulation
3.
Brain Sci ; 13(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36979322

ABSTRACT

Recent studies have questioned past conclusions regarding the mechanisms of the McGurk illusion, especially how McGurk susceptibility might inform our understanding of audiovisual (AV) integration. We previously proposed that the McGurk illusion is likely attributable to a default mechanism, whereby either the visual system, auditory system, or both default to specific phonemes-those implicated in the McGurk illusion. We hypothesized that the default mechanism occurs because visual stimuli with an indiscernible place of articulation (like those traditionally used in the McGurk illusion) lead to an ambiguous perceptual environment and thus a failure in AV integration. In the current study, we tested the default hypothesis as it pertains to the auditory system. Participants performed two tasks. One task was a typical McGurk illusion task, in which individuals listened to auditory-/ba/ paired with visual-/ga/ and judged what they heard. The second task was an auditory-only task, in which individuals transcribed trisyllabic words with a phoneme replaced by silence. We found that individuals' transcription of missing phonemes often defaulted to '/d/t/th/', the same phonemes often experienced during the McGurk illusion. Importantly, individuals' default rate was positively correlated with their McGurk rate. We conclude that the McGurk illusion arises when people fail to integrate visual percepts with auditory percepts, due to visual ambiguity, thus leading the auditory system to default to phonemes often implicated in the McGurk illusion.

4.
iScience ; 25(7): 104671, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35845168

ABSTRACT

Previous work addressing the influence of audition on visual perception has mainly been assessed using non-speech stimuli. Herein, we introduce the Audiovisual Time-Flow Illusion in spoken language, underscoring the role of audition in multisensory processing. When brief pauses were inserted into or brief portions were removed from an acoustic speech stream, individuals perceived the corresponding visual speech as "pausing" or "skipping", respectively-even though the visual stimulus was intact. When the stimulus manipulation was reversed-brief pauses were inserted into, or brief portions were removed from the visual speech stream-individuals failed to perceive the illusion in the corresponding intact auditory stream. Our findings demonstrate that in the context of spoken language, people continually realign the pace of their visual perception based on that of the auditory input. In short, the auditory modality sets the pace of the visual modality during audiovisual speech processing.

5.
Front Hum Neurosci ; 15: 616049, 2021.
Article in English | MEDLINE | ID: mdl-33867954

ABSTRACT

The McGurk illusion occurs when listeners hear an illusory percept (i.e., "da"), resulting from mismatched pairings of audiovisual (AV) speech stimuli (i.e., auditory/ba/paired with visual/ga/). Hearing a third percept-distinct from both the auditory and visual input-has been used as evidence of AV fusion. We examined whether the McGurk illusion is instead driven by visual dominance, whereby the third percept, e.g., "da," represents a default percept for visemes with an ambiguous place of articulation (POA), like/ga/. Participants watched videos of a talker uttering various consonant vowels (CVs) with (AV) and without (V-only) audios of/ba/. Individuals transcribed the CV they saw (V-only) or heard (AV). In the V-only condition, individuals predominantly saw "da"/"ta" when viewing CVs with indiscernible POAs. Likewise, in the AV condition, upon perceiving an illusion, they predominantly heard "da"/"ta" for CVs with indiscernible POAs. The illusion was stronger in individuals who exhibited weak/ba/auditory encoding (examined using a control auditory-only task). In Experiment2, we attempted to replicate these findings using stimuli recorded from a different talker. The V-only results were not replicated, but again individuals predominately heard "da"/"ta"/"tha" as an illusory percept for various AV combinations, and the illusion was stronger in individuals who exhibited weak/ba/auditory encoding. These results demonstrate that when visual CVs with indiscernible POAs are paired with a weakly encoded auditory/ba/, listeners default to hearing "da"/"ta"/"tha"-thus, tempering the AV fusion account, and favoring a default mechanism triggered when both AV stimuli are ambiguous.

6.
Brain Sci ; 10(11)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147691

ABSTRACT

The efficacy of audiovisual (AV) integration is reflected in the degree of cross-modal suppression of the auditory event-related potentials (ERPs, P1-N1-P2), while stronger semantic encoding is reflected in enhanced late ERP negativities (e.g., N450). We hypothesized that increasing visual stimulus reliability should lead to more robust AV-integration and enhanced semantic prediction, reflected in suppression of auditory ERPs and enhanced N450, respectively. EEG was acquired while individuals watched and listened to clear and blurred videos of a speaker uttering intact or highly-intelligible degraded (vocoded) words and made binary judgments about word meaning (animate or inanimate). We found that intact speech evoked larger negativity between 280-527-ms than vocoded speech, suggestive of more robust semantic prediction for the intact signal. For visual reliability, we found that greater cross-modal ERP suppression occurred for clear than blurred videos prior to sound onset and for the P2 ERP. Additionally, the later semantic-related negativity tended to be larger for clear than blurred videos. These results suggest that the cross-modal effect is largely confined to suppression of early auditory networks with weak effect on networks associated with semantic prediction. However, the semantic-related visual effect on the late negativity may have been tempered by the vocoded signal's high-reliability.

7.
Multisens Res ; 33(3): 277-294, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32508080

ABSTRACT

Lip-reading improves intelligibility in noisy acoustical environments. We hypothesized that watching mouth movements benefits speech comprehension in a 'cocktail party' by strengthening the encoding of the neural representations of the visually paired speech stream. In an audiovisual (AV) task, EEG was recorded as participants watched and listened to videos of a speaker uttering a sentence while also hearing a concurrent sentence by a speaker of the opposite gender. A key manipulation was that each audio sentence had a 200-ms segment replaced by white noise. To assess comprehension, subjects were tasked with transcribing the AV-attended sentence on randomly selected trials. In the auditory-only trials, subjects listened to the same sentences and completed the same task while watching a static picture of a speaker of either gender. Subjects directed their listening to the voice of the gender of the speaker in the video. We found that the N1 auditory-evoked potential (AEP) time-locked to white noise onsets was significantly more inhibited for the AV-attended sentences than for those of the auditorily-attended (A-attended) and AV-unattended sentences. N1 inhibition to noise onsets has been shown to index restoration of phonemic representations of degraded speech. These results underscore that attention and congruency in the AV setting help streamline the complex auditory scene, partly by reinforcing the neural representations of the visually attended stream, heightening the perception of continuity and comprehension.


Subject(s)
Auditory Perception , Evoked Potentials, Auditory , Lipreading , Noise , Speech Perception , Attention/physiology , Female , Humans , Language , Male
8.
Neurosci Lett ; 707: 134322, 2019 08 10.
Article in English | MEDLINE | ID: mdl-31181299

ABSTRACT

The McGurk illusion is experienced to various degrees among the general population. Previous studies have implicated the left superior temporal sulcus (STS) and auditory cortex (AC) as regions associated with this interindividual variability. We sought to further investigate the neurophysiology underlying this variability using a variant of the McGurk illusion design. Electroencephalography (EEG) was recorded while human subjects were presented with videos of a speaker uttering the consonant-vowels (CVs) /ba/ and /fa/, which were mixed and matched with audio of /ba/ and /fa/ to produce congruent and incongruent conditions. Subjects were also presented with unimodal stimuli of silent videos and audios of the CVs. They responded to whether they heard (or saw in the silent condition) /ba/ or /fa/. An illusion during the incongruent conditions was deemed successful when individuals heard the syllable conveyed by mouth movements. We hypothesized that individuals who experience the illusion more strongly should exhibit more robust desynchronization of alpha (7-12 Hz) at fronto-central and temporal sites, emphasizing more engagement of neural generators at the AC and STS. We found, however, that compared to weaker illusion perceivers, stronger illusion perceivers exhibited greater alpha synchronization at fronto-central and posterior temporal sites, which is consistent with inhibition of auditory representations. These findings suggest that stronger McGurk illusion perceivers possess more robust cross-modal sensory gating mechanisms whereby phonetic representations not conveyed by the visual system are inhibited, and in turn reinforcing perception of the visually targeted phonemes.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Illusions/physiology , Visual Perception/physiology , Electroencephalography , Humans , Young Adult
9.
J Neurophysiol ; 120(6): 2988-3000, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30303762

ABSTRACT

In spoken language, audiovisual (AV) perception occurs when the visual modality influences encoding of acoustic features (e.g., phonetic representations) at the auditory cortex. We examined how visual speech (mouth movements) transforms phonetic representations, indexed by changes to the N1 auditory evoked potential (AEP). EEG was acquired while human subjects watched and listened to videos of a speaker uttering consonant vowel (CV) syllables, /ba/ and /wa/, presented in auditory-only or AV congruent or incongruent contexts or in a context in which the consonants were replaced by white noise (noise replaced). Subjects reported whether they heard "ba" or "wa." We hypothesized that the auditory N1 amplitude during illusory perception (caused by incongruent AV input, as in the McGurk illusion, or white noise-replaced consonants in CV utterances) should shift to reflect the auditory N1 characteristics of the phonemes conveyed visually (by mouth movements) as opposed to acoustically. Indeed, the N1 AEP became larger and occurred earlier when listeners experienced illusory "ba" (video /ba/, audio /wa/, heard as "ba") and vice versa when they experienced illusory "wa" (video /wa/, audio /ba/, heard as "wa"), mirroring the N1 AEP characteristics for /ba/ and /wa/ observed in natural acoustic situations (e.g., auditory-only setting). This visually mediated N1 behavior was also observed for noise-replaced CVs. Taken together, the findings suggest that information relayed by the visual modality modifies phonetic representations at the auditory cortex and that similar neural mechanisms support the McGurk illusion and visually mediated phonemic restoration. NEW & NOTEWORTHY Using a variant of the McGurk illusion experimental design (using the syllables /ba/ and /wa/), we demonstrate that lipreading influences phonetic encoding at the auditory cortex. We show that the N1 auditory evoked potential morphology shifts to resemble the N1 morphology of the syllable conveyed visually. We also show similar N1 shifts when the consonants are replaced by white noise, suggesting that the McGurk illusion and the visually mediated phonemic restoration rely on common mechanisms.


Subject(s)
Evoked Potentials, Auditory , Illusions/physiology , Phonetics , Female , Humans , Male , Speech Perception , Young Adult
10.
Eur J Neurosci ; 48(8): 2836-2848, 2018 10.
Article in English | MEDLINE | ID: mdl-29363844

ABSTRACT

We tested the predictions of the dynamic reweighting model (DRM) of audiovisual (AV) speech integration, which posits that spectrotemporally reliable (informative) AV speech stimuli induce a reweighting of processing from low-level to high-level auditory networks. This reweighting decreases sensitivity to acoustic onsets and in turn increases tolerance to AV onset asynchronies (AVOA). EEG was recorded while subjects watched videos of a speaker uttering trisyllabic nonwords that varied in spectrotemporal reliability and asynchrony of the visual and auditory inputs. Subjects judged the stimuli as in-sync or out-of-sync. Results showed that subjects exhibited greater AVOA tolerance for non-blurred than blurred visual speech and for less than more degraded acoustic speech. Increased AVOA tolerance was reflected in reduced amplitude of the P1-P2 auditory evoked potentials, a neurophysiological indication of reduced sensitivity to acoustic onsets and successful AV integration. There was also sustained visual alpha band (8-14 Hz) suppression (desynchronization) following acoustic speech onsets for non-blurred vs. blurred visual speech, consistent with continuous engagement of the visual system as the speech unfolds. The current findings suggest that increased spectrotemporal reliability of acoustic and visual speech promotes robust AV integration, partly by suppressing sensitivity to acoustic onsets, in support of the DRM's reweighting mechanism. Increased visual signal reliability also sustains the engagement of the visual system with the auditory system to maintain alignment of information across modalities.


Subject(s)
Acoustic Stimulation/methods , Alpha Rhythm/physiology , Auditory Perception/physiology , Nerve Net/physiology , Photic Stimulation/methods , Visual Perception/physiology , Electroencephalography/methods , Female , Humans , Male , Reproducibility of Results , Young Adult
11.
J Neurosci ; 38(7): 1835-1849, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29263241

ABSTRACT

Audiovisual (AV) integration is essential for speech comprehension, especially in adverse listening situations. Divergent, but not mutually exclusive, theories have been proposed to explain the neural mechanisms underlying AV integration. One theory advocates that this process occurs via interactions between the auditory and visual cortices, as opposed to fusion of AV percepts in a multisensory integrator. Building upon this idea, we proposed that AV integration in spoken language reflects visually induced weighting of phonetic representations at the auditory cortex. EEG was recorded while male and female human subjects watched and listened to videos of a speaker uttering consonant vowel (CV) syllables /ba/ and /fa/, presented in Auditory-only, AV congruent or incongruent contexts. Subjects reported whether they heard /ba/ or /fa/. We hypothesized that vision alters phonetic encoding by dynamically weighting which phonetic representation in the auditory cortex is strengthened or weakened. That is, when subjects are presented with visual /fa/ and acoustic /ba/ and hear /fa/ (illusion-fa), the visual input strengthens the weighting of the phone /f/ representation. When subjects are presented with visual /ba/ and acoustic /fa/ and hear /ba/ (illusion-ba), the visual input weakens the weighting of the phone /f/ representation. Indeed, we found an enlarged N1 auditory evoked potential when subjects perceived illusion-ba, and a reduced N1 when they perceived illusion-fa, mirroring the N1 behavior for /ba/ and /fa/ in Auditory-only settings. These effects were especially pronounced in individuals with more robust illusory perception. These findings provide evidence that visual speech modifies phonetic encoding at the auditory cortex.SIGNIFICANCE STATEMENT The current study presents evidence that audiovisual integration in spoken language occurs when one modality (vision) acts on representations of a second modality (audition). Using the McGurk illusion, we show that visual context primes phonetic representations at the auditory cortex, altering the auditory percept, evidenced by changes in the N1 auditory evoked potential. This finding reinforces the theory that audiovisual integration occurs via visual networks influencing phonetic representations in the auditory cortex. We believe that this will lead to the generation of new hypotheses regarding cross-modal mapping, particularly whether it occurs via direct or indirect routes (e.g., via a multisensory mediator).


Subject(s)
Comprehension/physiology , Phonetics , Speech Perception/physiology , Acoustic Stimulation , Auditory Cortex , Auditory Perception/physiology , Electroencephalography , Evoked Potentials, Auditory , Female , Humans , Illusions/psychology , Individuality , Language , Lip/physiology , Male , Photic Stimulation , Reaction Time/physiology , Visual Perception/physiology , Young Adult
12.
Lang Cogn Neurosci ; 32(9): 1102-1118, 2017.
Article in English | MEDLINE | ID: mdl-28966930

ABSTRACT

We examined the relationship between tolerance for audiovisual onset asynchrony (AVOA) and the spectrotemporal fidelity of the spoken words and the speaker's mouth movements. In two experiments that only varied in the temporal order of sensory modality, visual speech leading (exp1) or lagging (exp2) acoustic speech, participants watched intact and blurred videos of a speaker uttering trisyllabic words and nonwords that were noise vocoded with 4-, 8-, 16-, and 32-channels. They judged whether the speaker's mouth movements and the speech sounds were in-sync or out-of-sync. Individuals perceived synchrony (tolerated AVOA) on more trials when the acoustic speech was more speech-like (8 channels and higher vs. 4 channels), and when visual speech was intact than blurred (exp1 only). These findings suggest that enhanced spectrotemporal fidelity of the audiovisual (AV) signal prompts the brain to widen the window of integration promoting the fusion of temporally distant AV percepts.

13.
Ann Otol Rhinol Laryngol ; 125(10): 858-61, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27357975

ABSTRACT

OBJECTIVES: We describe a novel use of cortical auditory evoked potentials in the preoperative workup to determine ear candidacy for cochlear implantation. METHODS: A 71-year-old male was evaluated who had a long-deafened right ear, had never worn a hearing aid in that ear, and relied heavily on use of a left-sided hearing aid. Electroencephalographic testing was performed using free field auditory stimulation of each ear independently with pure tones at 1000 and 2000 Hz at approximately 10 dB above pure-tone thresholds for each frequency and for each ear. RESULTS: Mature cortical potentials were identified through auditory stimulation of the long-deafened ear. The patient underwent successful implantation of that ear. He experienced progressively improving aided pure-tone thresholds and binaural speech recognition benefit (AzBio score of 74%). CONCLUSIONS: Findings suggest that use of cortical auditory evoked potentials may serve a preoperative role in ear selection prior to cochlear implantation.


Subject(s)
Auditory Threshold , Cochlear Implantation/methods , Deafness/rehabilitation , Evoked Potentials, Auditory/physiology , Patient Selection , Speech Perception , Aged , Audiometry, Pure-Tone , Cochlear Implants , Deafness/physiopathology , Electroencephalography , Humans , Male
14.
Ear Hear ; 37(4): 465-72, 2016.
Article in English | MEDLINE | ID: mdl-26655914

ABSTRACT

OBJECTIVES: Formant rise time (FRT) and amplitude rise time (ART) are acoustic cues that inform phonetic identity. FRT represents the rate of transition of the formant(s) to a steady state, while ART represents the rate at which the sound reaches its peak amplitude. Normal-hearing (NH) native English speakers weight FRT more than ART during the perceptual labeling of the /ba/-/wa/ contrast. This weighting strategy is reflected neurophysiologically in the magnitude of the mismatch negativity (MMN)-MMN is larger during the FRT than the ART distinction. The present study examined the neurophysiological basis of acoustic cue weighting in adult cochlear implant (CI) listeners using the MMN design. It was hypothesized that individuals with CIs who weight ART more in behavioral labeling (ART users) would show larger MMNs during the ART than the FRT contrast, and the opposite would be seen for FRT users. DESIGN: Electroencephalography was recorded while 20 adults with CIs listened passively to combinations of 3 synthetic speech stimuli: a /ba/ with /ba/-like FRT and ART; a /wa/ with /wa/-like FRT and ART; and a /ba/ stimulus with /ba/-like FRT and /wa/-like ART. The MMN response was elicited during the FRT contrast by having participants passively listen to a train of /wa/ stimuli interrupted occasionally by /ba/ stimuli, and vice versa. For the ART contrast, the same procedure was implemented using the /ba/ and /ba/ stimuli. RESULTS: Both ART and FRT users with CIs elicited MMNs that were equal in magnitudes during FRT and ART contrasts, with the exception that FRT users exhibited MMNs for ART and FRT contrasts that were temporally segregated. That is, their MMNs occurred significantly earlier during the ART contrast (~100 msec following sound onset) than during the FRT contrast (~200 msec). In contrast, the MMNs for ART users of both contrasts occurred later and were not significantly separable in time (~230 msec). Interestingly, this temporal segregation observed in FRT users is consistent with the MMN behavior in NH listeners. CONCLUSIONS: Results suggest that listeners with CIs who learn to classify phonemes based on formant dynamics, consistent with NH listeners, develop a strategy similar to NH listeners, in which the organization of the amplitude and spectral representations of phonemes in auditory memory are temporally segregated.


Subject(s)
Cochlear Implants , Cues , Deafness/rehabilitation , Evoked Potentials, Auditory , Speech Perception , Adolescent , Adult , Cochlear Implantation , Deafness/physiopathology , Electroencephalography , Female , Humans , Male , Middle Aged , Phonetics , Young Adult
15.
J Neurophysiol ; 113(5): 1437-50, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25505102

ABSTRACT

Audiovisual (AV) speech perception is robust to temporal asynchronies between visual and auditory stimuli. We investigated the neural mechanisms that facilitate tolerance for audiovisual stimulus onset asynchrony (AVOA) with EEG. Individuals were presented with AV words that were asynchronous in onsets of voice and mouth movement and judged whether they were synchronous or not. Behaviorally, individuals tolerated (perceived as synchronous) longer AVOAs when mouth movement preceded the speech (V-A) stimuli than when the speech preceded mouth movement (A-V). Neurophysiologically, the P1-N1-P2 auditory evoked potentials (AEPs), time-locked to sound onsets and known to arise in and surrounding the primary auditory cortex (PAC), were smaller for the in-sync than the out-of-sync percepts. Spectral power of oscillatory activity in the beta band (14-30 Hz) following the AEPs was larger during the in-sync than out-of-sync perception for both A-V and V-A conditions. However, alpha power (8-14 Hz), also following AEPs, was larger for the in-sync than out-of-sync percepts only in the V-A condition. These results demonstrate that AVOA tolerance is enhanced by inhibiting low-level auditory activity (e.g., AEPs representing generators in and surrounding PAC) that code for acoustic onsets. By reducing sensitivity to acoustic onsets, visual-to-auditory onset mapping is weakened, allowing for greater AVOA tolerance. In contrast, beta and alpha results suggest the involvement of higher-level neural processes that may code for language cues (phonetic, lexical), selective attention, and binding of AV percepts, allowing for wider neural windows of temporal integration, i.e., greater AVOA tolerance.


Subject(s)
Auditory Cortex/physiology , Auditory Perception , Cortical Synchronization , Evoked Potentials, Auditory , Speech Perception , Visual Perception , Acoustic Stimulation , Alpha Rhythm , Beta Rhythm , Female , Humans , Male , Mouth/physiology , Movement , Photic Stimulation , Voice , Young Adult
16.
Front Neurosci ; 8: 173, 2014.
Article in English | MEDLINE | ID: mdl-25053937

ABSTRACT

Speech reading enhances auditory perception in noise. One means by which this perceptual facilitation comes about is through information from visual networks reinforcing the encoding of the congruent speech signal by ignoring interfering acoustic signals. We tested this hypothesis neurophysiologically by acquiring EEG while individuals listened to words with a fixed portion of each word replaced by white noise. Congruent (meaningful) or incongruent (reversed frames) mouth movements accompanied the words. Individuals judged whether they heard the words as continuous (illusion) or interrupted (illusion failure) through the noise. We hypothesized that congruent, as opposed to incongruent, mouth movements should further enhance illusory perception by suppressing the auditory cortex's response to interruption onsets and offsets. Indeed, we found that the N1 auditory evoked potential (AEP) to noise onsets and offsets was reduced when individuals experienced the illusion during congruent, but not incongruent, audiovisual streams. This N1 inhibitory effect was most prominent at noise offsets, suggesting that visual influences on auditory perception are instigated to a greater extent during noisy periods. These findings suggest that visual context due to speech-reading disengages (inhibits) neural processes associated with interfering sounds (e.g., noisy interruptions) during speech perception.

17.
J Speech Lang Hear Res ; 57(2): 566-82, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686722

ABSTRACT

PURPOSE Several acoustic cues specify any single phonemic contrast. Nonetheless, adult, native speakers of a language share weighting strategies, showing preferential attention to some properties over others. Cochlear implant (CI) signal processing disrupts the salience of some cues: In general, amplitude structure remains readily available, but spectral structure less so. This study asked how well speech recognition is supported if CI users shift attention to salient cues not weighted strongly by native speakers. METHOD Twenty adults with CIs participated. The /bɑ/-/wɑ/ contrast was used because spectral and amplitude structure varies in correlated fashion for this contrast. Adults with normal hearing weight the spectral cue strongly but the amplitude cue negligibly. Three measurements were made: labeling decisions, spectral and amplitude discrimination, and word recognition. RESULTS Outcomes varied across listeners: Some weighted the spectral cue strongly, some weighted the amplitude cue, and some weighted neither. Spectral discrimination predicted spectral weighting. Spectral weighting explained the most variance in word recognition. Age of onset of hearing loss predicted spectral weighting but not unique variance in word recognition. CONCLUSION The weighting strategies of listeners with normal hearing likely support speech recognition best, so efforts in implant design, fitting, and training should focus on developing those strategies.


Subject(s)
Cochlear Implantation/rehabilitation , Cochlear Implants , Cues , Phonetics , Psychoacoustics , Speech Perception , Acoustic Stimulation/methods , Adolescent , Adult , Hearing , Hearing Loss/rehabilitation , Humans , Middle Aged , Multilingualism , Speech Acoustics , Speech Discrimination Tests , Young Adult
18.
Brain Lang ; 130: 42-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24576808

ABSTRACT

Listeners assign different weights to spectral dynamics, such as formant rise time (FRT), and temporal dynamics, such as amplitude rise time (ART), during phonetic judgments. We examined the neurophysiological basis of FRT and ART weighting in the /ba/-/wa/ contrast. Electroencephalography was recorded for thirteen adult English speakers during a mismatch negativity (MMN) design using synthetic stimuli: a /ba/ with /ba/-like FRT and ART; a /wa/ with /wa/-like FRT and ART; and a /ba/(wa) with /ba/-like FRT and /wa/-like ART. We hypothesized that because of stronger reliance on FRT, subjects would encode a stronger memory trace and exhibit larger MMN during the FRT than the ART contrast. Results supported this hypothesis. The effect was most robust in the later portion of MMN. Findings suggest that MMN is generated by multiple sources, differentially reflecting acoustic change detection (earlier MMN, bottom-up process) and perceptual weighting of ART and FRT (later MMN, top-down process).


Subject(s)
Cues , Electroencephalography , Language , Memory/physiology , Phonetics , Speech Perception/physiology , Adult , Brain Mapping , Evoked Potentials, Auditory/physiology , Female , Humans , Male , Young Adult
19.
Neurosci Lett ; 544: 56-61, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23570734

ABSTRACT

We investigated the development of weighting strategies for acoustic cues by examining the morphology of the N1-P2 auditory evoked potential (AEP) to changes in amplitude rise time (ART) and rate of formant transition (RFT) of consonant-vowel (CV) pairs in 4-6-year olds and adults. In the AEP session, individuals listened passively to the CVs /ba/, /wa/, and a /ba/ with a superimposed slower-rising /wa/ envelope (/ba/(wa)). In the behavioral session, individuals listened to the same stimuli and judged whether they heard a /ba/ or /wa/. We hypothesized that a developmental shift in weighting strategies should be reflected in a change in the morphology of the N1-P2 AEP. In 6-year olds and adults, the N1-P2 amplitude at the vertex reflected a change in RFT but not in ART. In contrast, in the 4-5-year olds, the vertex N1-P2 did not show specificity to changes in ART or RFT. In all groups, the N1-P2 amplitude at channel C4 (right hemisphere) reflected a change in ART but not in RFT. Behaviorally, 6-year olds and adults predominately utilized RFT cues (classified /ba/(wa) as /ba/) during phonetic judgments, as opposed to 4-5-year olds which utilized both cues equally. Our findings suggest that both ART and RFT are encoded in the auditory cortex, but an N1-P2 shift toward the vertex following age 4-5 indicates a shift toward an adult-like weighting strategy, such that, to utilize RFT to a greater extent.


Subject(s)
Acoustic Stimulation/methods , Aging/physiology , Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Phonetics , Speech Acoustics , Speech Perception/physiology , Adolescent , Adult , Child , Child, Preschool , Cues , Female , Humans , Male , Young Adult
20.
Eur J Neurosci ; 36(12): 3740-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23020238

ABSTRACT

This study examined the neurophysiological mechanisms of speech segmentation, the process of parsing the continuous speech signal into isolated words. Individuals listened to sequences of two monosyllabic words (e.g. gas source) and non-words (e.g. nas sorf). When these phrases are spoken, talkers usually produce one continuous s-sound, not two distinct s-sounds, making it unclear where one word ends and the next one begins. This ambiguity in the signal can also result in perceptual ambiguity, causing the sequence to be heard as one word (failed to segment) or two words (segmented). We compared listeners' electroencephalogram activity when they reported hearing one word or two words, and found that bursts of fronto-central alpha activity (9-14 Hz), following the onset of the physical /s/ and end of phrase, indexed speech segmentation. Left-lateralized beta activity (14-18 Hz) following the end of phrase distinguished word from non-word segmentation. A hallmark of enhanced alpha activity is that it reflects inhibition of task-irrelevant neural populations. Thus, the current results suggest that disengagement of neural processes that become irrelevant as the words unfold marks word boundaries in continuous speech, leading to segmentation. Beta activity is likely associated with unifying word representations into coherent phrases.


Subject(s)
Alpha Rhythm , Speech Perception/physiology , Adolescent , Adult , Beta Rhythm , Brain/physiology , Female , Humans , Male , Speech/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...