Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 9249530, 2022.
Article in English | MEDLINE | ID: mdl-36093507

ABSTRACT

Olive trees grow all over the world in reasonably moderate and dry climates, making them fortunate and medicinal. Pesticides are required to improve crop quality and productivity. Olive trees have had important cultural and economic significance since the early pre-Roman era. In 2019, Al-Jouf region in a Kingdom of Saudi Arabia's north achieved global prominence by breaking a Guinness World Record for having more number of olive trees in a world. Unmanned aerial systems (UAS) were increasingly being used in aerial sensing activities. However, sensing data must be processed further before it can be used. This processing necessitates a huge amount of computational power as well as the time until transmission. Accurately measuring the biovolume of trees is an initial step in monitoring their effectiveness in olive output and health. To overcome these issues, we initially formed a large scale of olive database for deep learning technology and applications. The collection comprises 250 RGB photos captured throughout Al-Jouf, KSA. This paper employs among the greatest efficient deep learning occurrence segmentation techniques (Mask Regional-CNN) with photos from unmanned aerial vehicles (UAVs) to calculate the biovolume of single olive trees. Then, using satellite imagery, we present an actual deep learning method (SwinTU-net) for identifying and counting of olive trees. SwinTU-net is a U-net-like network that includes encoding, decoding, and skipping links. SwinTU-net's essential unit for learning locally and globally semantic features is the Swin Transformer blocks. Then, we tested the method on photos with several wavelength channels (red, greenish, blues, and infrared region) and vegetation indexes (NDVI and GNDVI). The effectiveness of RGB images is evaluated at the two spatial rulings: 3 cm/pixel and 13 cm/pixel, whereas NDVI and GNDV images have only been evaluated at 13 cm/pixel. As a result of integrating all datasets of GNDVI and NDVI, all generated mask regional-CNN-based systems performed well in segmenting tree crowns (F1-measure from 95.0 to 98.0 percent). Based on ground truth readings in a group of trees, a calculated biovolume was 82 percent accurate. These findings support all usage of NDVI and GNDVI spectrum indices in UAV pictures to accurately estimate the biovolume of distributed trees including olive trees.


Subject(s)
Deep Learning , Olea , Remote Sensing Technology/methods , Satellite Imagery
2.
Comput Electr Eng ; 101: 108055, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35505976

ABSTRACT

As people all over the world are vulnerable to be affected by the COVID-19 virus, the automatic detection of such a virus is an important concern. The paper aims to detect and classify corona virus using machine learning. To spot and identify corona virus in CT-Lung screening and Computer-Aided diagnosis (CAD) system is projected to distinguish and classifies the COVID-19. By utilizing the clinical specimens obtained from the corona-infected patients with the help of some machine learning techniques like Decision Tree, Support Vector Machine, K-means clustering, and Radial Basis Function. While some specialists believe that the RT-PCR test is the best option for diagnosing Covid-19 patients, others believe that CT scans of the lungs can be more accurate in diagnosing corona virus infection, as well as being less expensive than the PCR test. The clinical specimens include serum specimens, respiratory secretions, and whole blood specimens. Overall, 15 factors are measured from these specimens as the result of the previous clinical examinations. The proposed CAD system consists of four phases starting with the CT lungs screening collection, followed by a pre-processing stage to enhance the appearance of the ground glass opacities (GGOs) nodules as they originally lock hazy with fainting contrast. A modified K-means algorithm will be used to detect and segment these regions. Finally, the use of detected, infected areas that obtained in the detection phase with a scale of 50×50 and perform segmentation of the solid false positives that seem to be GGOs as inputs and targets for the machine learning classifiers, here a support vector machine (SVM) and Radial basis function (RBF) has been utilized. Moreover, a GUI application is developed which avoids the confusion of the doctors for getting the exact results by giving the 15 input factors obtained from the clinical specimens.

3.
J Healthc Eng ; 2022: 6389069, 2022.
Article in English | MEDLINE | ID: mdl-35310183

ABSTRACT

Patient behavioral analysis is a critical component in treating patients with a variety of issues, with head trauma, neurological disease, and mental illness. The analysis of the patient's behavior aids in establishing the disease's core cause. Patient behavioral analysis has a number of contests that are much more problematic in traditional healthcare. With the advancement of smart healthcare, patient behavior may be simply analyzed. A new generation of information technologies, particularly the Internet of Things (IoT), is being utilized to transform the traditional healthcare system in a variety of ways. The Internet of Things (IoT) in healthcare is a crucial role in offering improved medical facilities to people as well as assisting doctors and hospitals. The proposed system comprises of a variety of medical equipment, such as mobile-based apps and sensors, which is useful in collecting and monitoring the medical information and health data of patient and interact to the doctor via network connected devices. This research may provide key information on the impact of smart healthcare and the Internet of Things in patient beavior and treatment. Patient data are exchanged via the Internet, where it is viewed and analyzed using machine learning algorithms. The deep belief neural network evaluates the patient's particulars from health data in order to determine the patient's exact health state. The developed system proved the average error rate of about 0.04 and ensured accuracy about 99% in analyzing the patient behavior.


Subject(s)
Internet of Things , Mobile Applications , Algorithms , Delivery of Health Care , Humans , Neural Networks, Computer
4.
J Healthc Eng ; 2021: 9938646, 2021.
Article in English | MEDLINE | ID: mdl-34007432

ABSTRACT

A Brain-Computer Interface (BCI) is a system used to communicate with an external world through the brain activity. The brain activity is measured by electroencephalography (EEG) signal and then processed by a BCI system. EEG source reconstruction could be a way to improve the accuracy of EEG classification in EEG based brain-computer interface (BCI). The source localization of the human brain activities can be an important resource for the recognition of the cognitive state, medical disorders, and a better understanding of the brain in general. In this study, we have compared 51 mother wavelets taken from 7 different wavelet families, which are applied to a Stationary Wavelet Transform (SWT) decomposition of an EEG signal. This process includes Haar, Symlets, Daubechies, Coiflets, Discrete Meyer, Biorthogonal, and reverse Biorthogonal wavelet families in extracting five different brainwave subbands for source localization. For this process, we used the Independent Component Analysis (ICA) for feature extraction followed by the Boundary Element Model (BEM) and the Equivalent Current Dipole (ECD) for the forward and inverse problem solutions. The evaluation results in investigating the optimal mother wavelet for source localization eventually identified the sym20 mother wavelet as the best choice followed by bior6.8 and coif5.


Subject(s)
Brain Waves , Brain-Computer Interfaces , Algorithms , Brain , Electroencephalography/methods , Humans , Signal Processing, Computer-Assisted , Wavelet Analysis
5.
Comput Intell Neurosci ; 2021: 7677568, 2021.
Article in English | MEDLINE | ID: mdl-35003247

ABSTRACT

Cardiac arrhythmia is an illness in which a heartbeat is erratic, either too slow or too rapid. It happens as a result of faulty electrical impulses that coordinate the heartbeats. Sudden cardiac death can occur as a result of certain serious arrhythmia disorders. As a result, the primary goal of electrocardiogram (ECG) investigation is to reliably perceive arrhythmias as life-threatening to provide a suitable therapy and save lives. ECG signals are waveforms that denote the electrical movement of the human heart (P, QRS, and T). The duration, structure, and distances between various peaks of each waveform are utilized to identify heart problems. The signals' autoregressive (AR) analysis is then used to obtain a specific selection of signal features, the parameters of the AR signal model. Groups of retrieved AR characteristics for three various ECG kinds are cleanly separated in the training dataset, providing high connection classification and heart problem diagnosis to each ECG signal within the training dataset. A new technique based on two-event-related moving averages (TERMAs) and fractional Fourier transform (FFT) algorithms is suggested to better evaluate ECG signals. This study could help researchers examine the current state-of-the-art approaches employed in the detection of arrhythmia situations. The characteristic of our suggested machine learning approach is cross-database training and testing with improved characteristics.


Subject(s)
Electrocardiography , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac/diagnosis , Heart Rate , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...