Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 1957-1969, 2024 04.
Article in English | MEDLINE | ID: mdl-37801146

ABSTRACT

Pheochromocytoma (PCC) is a neuroendocrine tumor that produces and secretes catecholamine from either the adrenal medulla or extra-adrenal locations. MicroRNAs (miRNAs, miR) can be used as biomarkers to detect cancer or the return of a previously treated disease. Blood-borne miRNAs might be envisioned as noninvasive markers of malignancy or prognosis, and new studies demonstrate that microRNAs are released in body fluids as well as tissues. MiRNAs have the potential to be therapeutic targets, which would greatly increase the restricted therapy options for adrenal tumors. This article aims to consolidate and synthesize the most recent studies on miRNAs in PCC, discussing their potential clinical utility as diagnostic and prognostic biomarkers while also addressing their limitations.


Subject(s)
Adrenal Gland Neoplasms , MicroRNAs , Pheochromocytoma , Humans , Pheochromocytoma/diagnosis , Pheochromocytoma/genetics , Pheochromocytoma/pathology , Adrenal Gland Neoplasms/diagnosis , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/pathology , Prognosis , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic
2.
Pathol Res Pract ; 251: 154856, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806171

ABSTRACT

Pheochromocytoma (PCC) is a type of neuroendocrine tumor that originates from adrenal medulla or extra-adrenal chromaffin cells and results in the production of catecholamine. Paroxysmal hypertension and cardiovascular crises were among the clinical signs experienced by people with PCC. Five-year survival of advanced-stage PCC is just around 40% despite the identification of various molecular-level fundamentals implicated in these pathogenic pathways. MicroRNAs (miRNAs, miRs) are a type of short, non-coding RNA (ncRNA) that attach to the 3'-UTR of a target mRNA, causing translational inhibition or mRNA degradation. Evidence is mounting that miRNA dysregulation plays a role in the development, progression, and treatment of cancers like PCC. Hence, this study employs a comprehensive and expedited survey to elucidate the potential role of miRNAs in the development of PCC, surpassing their association with survival rates and treatment options in this particular malignancy.


Subject(s)
Adrenal Gland Neoplasms , MicroRNAs , Pheochromocytoma , Humans , Pheochromocytoma/diagnosis , MicroRNAs/genetics , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/diagnosis , Catecholamines , Signal Transduction
3.
Pathol Res Pract ; 248: 154684, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37454489

ABSTRACT

Gallbladder cancer (GBC) is characterized by a highly invasive nature and a poor prognosis, with adenocarcinoma being the main histological subtype. According to statistical data, patients diagnosed with advanced GBC have a survival rate of less than 5% for 5 years. Despite the novel therapeutic techniques, the unsatisfactory results could be related to the underlying biology of tumor cells and resistance to chemotherapy. Early diagnosis is more important than clinical therapy as it assists in determining the pathological stage of cancer and facilitates the selection of appropriate medication. Hence, it is very important to understand the precise pathogenesis of GBC and to discover potential novel biomarkers for early diagnosis of GBC. Non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have been found to influence the transcriptional regulation of target genes associated with cancer, either directly or indirectly. microRNAs are a group of small, non-coding, single-stranded RNAs that are expressed endogenously. miRNAs play significant roles in various fundamental cellular processes. Therefore, miRNAs have the potential to serve as valuable biomarkers and therapeutic targets for GBC.


Subject(s)
Carcinoma in Situ , Gallbladder Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Gallbladder Neoplasms/diagnosis , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , Drug Resistance , Prognosis
4.
Pathol Res Pract ; 248: 154611, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37315401

ABSTRACT

Testicular germ cell tumors (TGCTs) are the most common testicular neoplasms in adolescents and young males. Understanding the genetic basis of TGCTs represents a growing need to cope with the increased incidence of these neoplasms. Although the cure rates have been comparatively increased, investigation of mechanisms underlying the incidence, progression, metastasis, recurrence, and therapy resistance is still necessary. Early diagnosis and non-compulsory clinical therapeutic agents without long-term side effects are now required to reduce the cancer burden, especially in the younger age groups. MicroRNAs (miRNAs) control an extensive range of cellular functions and exhibit a pivotal action in the development and spreading of TGCTs. Because of their dysregulation and disruption in function, miRNAs have been linked to the malignant pathophysiology of TGCTs by influencing many cellular functions involved in the disease. These biological processes include increased invasive and proliferative perspective, cell cycle dysregulation, apoptosis disruption, stimulation of angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and resistance to certain treatments. Herein, we present an up-to-date review of the biogenesis of miRNAs, miRNA regulatory mechanisms, clinical challenges, and therapeutic interventions of TGCTs, and role of nanoparticles in the treatment of TGCTs.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Male , Adolescent , Humans , MicroRNAs/genetics , MicroRNAs/therapeutic use , Neoplasms, Germ Cell and Embryonal/genetics , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Signal Transduction/genetics
5.
Pathol Res Pract ; 248: 154612, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37327566

ABSTRACT

Testicular cancer (TC) is one of the most frequently incident solid tumors in males. A growing prevalence has been documented in developed countries. Although recent advances have made TC an exceedingly treatable cancer, numerous zones in TC care still have divisive treatment decisions. In addition to physical examination and imaging techniques, conventional serum tumor markers have been traditionally used for the diagnosis of testicular germ cell tumors (TGCT). Unlike other genital and urinary tract tumors, recent research methods have not been broadly used in TGCTs. Even though several challenges in TC care must be addressed, a dedicated group of biomarkers could be particularly beneficial to help classify patient risk, detect relapse early, guide surgery decisions, and tailor follow-up. Existing tumor markers (Alpha-fetoprotein, human chorionic gonadotrophin, and lactate dehydrogenase) have limited accuracy and sensitivity when used as diagnostic, prognostic, or predictive markers. At present, microRNAs (miRNA or miR) play a crucial role in the process of several malignancies. The miRNAs exhibit pronounced potential as novel biomarkers since they reveal high stability in body fluids, are easily detected, and are relatively inexpensive in quantitative assays. In this review, we aimed to shed light on the recent novelties in developing microRNAs as diagnostic and prognostic markers in TC and discuss their clinical applications in TC management.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Male , Humans , MicroRNAs/genetics , Testicular Neoplasms/diagnosis , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/genetics , Biomarkers, Tumor/genetics , Drug Resistance
6.
Pathol Res Pract ; 248: 154613, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37327567

ABSTRACT

MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.

7.
Pathol Res Pract ; 248: 154624, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37348290

ABSTRACT

For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.


Subject(s)
Cardiovascular Diseases , Heart Diseases , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiovascular Diseases/genetics , Signal Transduction , Gene Expression Regulation
8.
Pathol Res Pract ; 246: 154512, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37172525

ABSTRACT

Long non-coding RNAs (lncRNAs) are a class of noncoding RNAs with a length larger than 200 nucleotides that participate in various diseases and biological processes as they can control gene expression by different mechanisms. Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder characterized by symmetrical destructive destruction of distal joints as well as extra-articular involvement. Different studies have documented and proven the abnormal expression of lncRNAs in RA patients. Various lncRNAs have proven potential as biomarkers and targets for diagnosing, prognosis and treating RA. This review will focus on RA pathogenesis, clinical implications, and related lncRNA expressions that help to identify new biomarkers and treatment targets.


Subject(s)
Arthritis, Rheumatoid , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , RNA, Untranslated , Biomarkers/metabolism
9.
Pathol Res Pract ; 245: 154440, 2023 May.
Article in English | MEDLINE | ID: mdl-37031531

ABSTRACT

MicroRNAs (miRNAs), short, highly conserved non-coding RNA, influence gene expression by sequential mechanisms such as mRNA breakdown or translational repression. Many biological processes depend on these regulating substances, thus changes in their expression have an impact on the maintenance of cellular homeostasis and result in the emergence of a variety of diseases. Relevant studies have shown in recent years that miRNAs are involved in many stages of bone development and growth. Additionally, abnormal production of miRNA in bone tissues has been closely associated with the development of numerous bone disorders, such as osteonecrosis, bone cancer, and bone metastases. Many pathological processes, including bone loss, metastasis, the proliferation of osteosarcoma cells, and differentiation of osteoblasts and osteoclasts, are under the control of miRNAs. By bringing together the most up-to-date information on the clinical relevance of miRNAs in such diseases, this study hopes to further the study of the biological features of miRNAs in bone disorders and explore their potential as a therapeutic target.


Subject(s)
Bone Neoplasms , MicroRNAs , Humans , MicroRNAs/metabolism , Bone and Bones/metabolism , Osteoclasts , Osteoblasts/metabolism , Bone Neoplasms/genetics
10.
Pathol Res Pract ; 245: 154439, 2023 May.
Article in English | MEDLINE | ID: mdl-37028108

ABSTRACT

Renal cell carcinoma (RCC) has the highest mortality rate of all genitourinary cancers, and its prevalence has grown over time. While RCC can be surgically treated and recurrence is only probable in a tiny proportion of patients, early diagnosis is crucial. Mutations in a large number of oncogenes and tumor suppressor genes contribute to pathway dysregulation in RCC. MicroRNAs (miRNAs) have considerable promise as biomarkers for detecting cancer due to their special combination of properties. Several miRNAs have been proposed as a diagnostic or monitoring tool for RCC based on their presence in the blood or urine. Moreover, the expression profile of particular miRNAs has been associated with the response to chemotherapy, immunotherapy, or targeted therapeutic options like sunitinib. The goal of this review is to go over the development, spread, and evolution of RCC. Also, we emphasize the outcomes of studies that examined the use of miRNAs in RCC patients as biomarkers, therapeutic targets, or modulators of responsiveness to treatment modalities.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/metabolism , MicroRNAs/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Kidney Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Oncogenes , Gene Expression Regulation, Neoplastic
11.
Pathol Res Pract ; 243: 154375, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36801506

ABSTRACT

MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.


Subject(s)
Carcinoma, Hepatocellular , Liver Diseases , Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Biomarkers , Liver Cirrhosis , RNA, Messenger/genetics , Liver Diseases/genetics , Liver Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...