Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 368(6490): 506-509, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32355026

ABSTRACT

The explicit breaking of the axial symmetry by quantum fluctuations gives rise to the so-called axial anomaly. This phenomenon is solely responsible for the decay of the neutral pion π0 into two photons (γγ), leading to its unusually short lifetime. We precisely measured the decay width Γ of the [Formula: see text] process. The differential cross sections for π0 photoproduction at forward angles were measured on two targets, carbon-12 and silicon-28, yielding [Formula: see text], where stat. denotes the statistical uncertainty and syst. the systematic uncertainty. We combined the results of this and an earlier experiment to generate a weighted average of [Formula: see text] Our final result has a total uncertainty of 1.50% and confirms the prediction based on the chiral anomaly in quantum chromodynamics.

2.
Article in English | MEDLINE | ID: mdl-24032904

ABSTRACT

We study nonlinear phenomena of bistability and chaos at a level of few quanta. For this purpose, we consider a single-mode dissipative oscillator with strong Kerr nonlinearity with respect to the dissipation rate driven by a monochromatic force as well as by a train of Gaussian pulses. The quantum effects and decoherence in the oscillatory mode are investigated in the framework of the purity of states and the Wigner functions calculated from the master equation. We demonstrate the quantum chaotic regime by means of a comparison between the contour plots of the Wigner functions and the strange attractors on the classical Poincaré section. Considering bistability at a low limit of quanta, we analyze the minimal level of excitation numbers at which the bistable regime of the system is displayed. We also discuss the formation of an oscillatory chaotic regime by varying oscillatory excitation numbers at ranges of a few quanta. We demonstrate quantum-interference phenomena that are assisted hysteresis-cycle behavior and quantum chaos for the oscillator driven by a train of Gaussian pulses. We establish the border of quantum-classical correspondence for chaotic regimes in the case of strong nonlinearities.

SELECTION OF CITATIONS
SEARCH DETAIL
...