Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Pollut ; 292(Pt A): 118303, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34626703

ABSTRACT

Fine particulate matter cause profound adverse health effects in Iran. Road traffic is one of the main sources of particulate matter (PM) in urban areas, and has a large contribution in PM2.5 and organic carbon concentration, in Tehran, Iran. The composition of fine PM vehicle emission is poorly known, so this paper aims to determine the mixed fleet source profile by using the analysed data from the two internal stations and the emission factor for PM light-duty vehicles emission. Tunnels are ideal media for extraction vehicle source profile and emission factor, due to vehicles are the only source of pollutant in the urban tunnels. In this study, PM samples were collected simultaneously in two road tunnel stations and at a background site in Niyayesh tunnel in Tehran, Iran. The tunnel samples show a large contribution for some elements and ions, such as Fe (0.23 µg µg-1 OC), Al (0.02 µg µg-1 OC), Ca (0.055 µg µg-1 OC), SO4 (0.047 µg µg-1 OC), Docosane (0.0017 µg µg-1 OC), Triacontane (0.016 µg µg-1 OC), Anthracenedione (0.0003 µg µg-1 OC) and Benzo-perylene (0.0002 µg µg-1 OC). In overall, on-road gasoline vehicle fleets source profile extracted in this study is similar to composite profiles derived from roadside tunnel measurment performed in other countries during the last decades. The PM2.5 emission factor for Tehran's light-duty vehicle fleet has been extracted 16.23 mg km-1. vehicle-1and 0.09 g kg-1. The profile would be used for Chemical Mass Balance Model studies for Iran and other countries with a similar road traffic fleet mix. Also, it would be very suitable for use in emission inventories improvement. The results of this study can be used for choosing the best management strategies and provide comperhensive insight to fine PM traffic emission in Tehran.


Subject(s)
Air Pollutants , Gasoline , Air Pollutants/analysis , Environmental Monitoring , Gasoline/analysis , Iran , Motor Vehicles , Particulate Matter/analysis , Vehicle Emissions/analysis
3.
Environ Pollut ; 239: 69-81, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29649761

ABSTRACT

Currently PM2.5 is a major air pollution concern in Tehran, Iran due to frequent high levels and possible adverse impacts. In this study, which is the first of its kind to take place in Tehran, composition and sources of PM2.5 and carbonaceous aerosol were determined, and their seasonal trends were studied. In this regard, fine PM samples were collected every six days at a residential station for one year and the chemical constituents including organic marker species, metals, and ions were analyzed by chemical analysis. The source apportionment was performed using organic molecular marker-based CMB receptor modeling. Carbonaceous compounds were the major contributors to fine particulate mass in Tehran, as OC and EC together comprised on average 29% of PM2.5 mass. Major portions of OC in Tehran were water insoluble and are mainly attributed to primary sources. Higher levels of several PAHs, which are organic tracers of incomplete combustion, and hopanes and steranes as organic tracers of mobile sources were obtained in cold months and compared to the warm months. The major contributing source to particulate OC was identified as vehicles, which contributed about 72% of measured OC. Among mobile sources, gasoline-fueled vehicles had the highest impact with a mean contribution of 48% to the measured OC. Mobile sources also were the largest contributor to total PM2.5 (40%), followed by dust (24%) and sulfate (11%). In addition to primary emissions, mobile sources also directly and indirectly played an important role in another 27% of fine particulate mass (secondary organics and ions), which highlights the impact of vehicles in Tehran. Our results highlighted and quantified the role of motor vehicles in fine PM production, particularly during winter time. The results of this study could be used to set more effective regulations and control strategies particularly upon mobile sources.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Hydrocarbons/analysis , Particulate Matter/analysis , Seasons , Aerosols , Air Pollutants/chemistry , Human Activities , Iran , Models, Theoretical , Particle Size , Particulate Matter/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...