Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
PeerJ Comput Sci ; 10: e1993, 2024.
Article in English | MEDLINE | ID: mdl-38855253

ABSTRACT

Non-linear dimensionality reduction can be performed by manifold learning approaches, such as stochastic neighbour embedding (SNE), locally linear embedding (LLE) and isometric feature mapping (ISOMAP). These methods aim to produce two or three latent embeddings, primarily to visualise the data in intelligible representations. This manuscript proposes extensions of Student's t-distributed SNE (t-SNE), LLE and ISOMAP, for dimensionality reduction and visualisation of multi-view data. Multi-view data refers to multiple types of data generated from the same samples. The proposed multi-view approaches provide more comprehensible projections of the samples compared to the ones obtained by visualising each data-view separately. Commonly, visualisation is used for identifying underlying patterns within the samples. By incorporating the obtained low-dimensional embeddings from the multi-view manifold approaches into the K-means clustering algorithm, it is shown that clusters of the samples are accurately identified. Through extensive comparisons of novel and existing multi-view manifold learning algorithms on real and synthetic data, the proposed multi-view extension of t-SNE, named multi-SNE, is found to have the best performance, quantified both qualitatively and quantitatively by assessing the clusterings obtained. The applicability of multi-SNE is illustrated by its implementation in the newly developed and challenging multi-omics single-cell data. The aim is to visualise and identify cell heterogeneity and cell types in biological tissues relevant to health and disease. In this application, multi-SNE provides an improved performance over single-view manifold learning approaches and a promising solution for unified clustering of multi-omics single-cell data.

2.
EMBO J ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886580

ABSTRACT

Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3ß kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.

3.
J R Soc Interface ; 20(206): 20230206, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37751876

ABSTRACT

Coarse-grained resource allocation models (C-GRAMs) are simple mathematical models of cell physiology, where large components of the macromolecular composition are abstracted into single entities. The dynamics and steady-state behaviour of such models provides insights on optimal allocation of cellular resources and have explained experimentally observed cellular growth laws, but current models do not account for the uptake of compound sources of carbon and nitrogen. Here, we formulate a C-GRAM with nitrogen and carbon pathways converging on biomass production, with parametrizations accounting for respirofermentative and purely respiratory growth. The model describes the effects of the uptake of sugars, ammonium and/or compound nutrients such as amino acids on the translational resource allocation towards proteome sectors that maximized the growth rate. It robustly recovers cellular growth laws including the Monod law and the ribosomal growth law. Furthermore, we show how the growth-maximizing balance between carbon uptake, recycling, and excretion depends on the nutrient environment. Lastly, we find a robust linear correlation between the ribosome fraction and the abundance of amino acid equivalents in the optimal cell, which supports the view that simple regulation of translational gene expression can enable cells to achieve an approximately optimal growth state.

4.
Bioinformatics ; 39(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37354494

ABSTRACT

MOTIVATION: Gene expression is characterized by stochastic bursts of transcription that occur at brief and random periods of promoter activity. The kinetics of gene expression burstiness differs across the genome and is dependent on the promoter sequence, among other factors. Single-cell RNA sequencing (scRNA-seq) has made it possible to quantify the cell-to-cell variability in transcription at a global genome-wide level. However, scRNA-seq data are prone to technical variability, including low and variable capture efficiency of transcripts from individual cells. RESULTS: Here, we propose a novel mathematical theory for the observed variability in scRNA-seq data. Our method captures burst kinetics and variability in both the cell size and capture efficiency, which allows us to propose several likelihood-based and simulation-based methods for the inference of burst kinetics from scRNA-seq data. Using both synthetic and real data, we show that the simulation-based methods provide an accurate, robust and flexible tool for inferring burst kinetics from scRNA-seq data. In particular, in a supervised manner, a simulation-based inference method based on neural networks proves to be accurate and useful when applied to both allele and nonallele-specific scRNA-seq data. AVAILABILITY AND IMPLEMENTATION: The code for Neural Network and Approximate Bayesian Computation inference is available at https://github.com/WT215/nnRNA and https://github.com/WT215/Julia_ABC, respectively.


Subject(s)
Gene Expression Profiling , Transcriptome , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Software , Bayes Theorem , Kinetics , Likelihood Functions , Single-Cell Analysis/methods , RNA
5.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37193545

ABSTRACT

Steady-state cell size and geometry depend on growth conditions. Here, we use an experimental setup based on continuous culture and single-cell imaging to study how cell volume, length, width and surface-to-volume ratio vary across a range of growth conditions including nitrogen and carbon titration, the choice of nitrogen source, and translation inhibition. Overall, we find cell geometry is not fully determined by growth rate and depends on the specific mode of growth rate modulation. However, under nitrogen and carbon titrations, we observe that the cell volume and the growth rate follow the same linear scaling.

6.
R Soc Open Sci ; 10(3): 221444, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36968241

ABSTRACT

Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.

7.
Cancer Cell ; 41(1): 70-87.e14, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36332625

ABSTRACT

The evolution of established cancers is driven by selection of cells with enhanced fitness. Subclonal mutations in numerous epigenetic regulator genes are common across cancer types, yet their functional impact has been unclear. Here, we show that disruption of the epigenetic regulatory network increases the tolerance of cancer cells to unfavorable environments experienced within growing tumors by promoting the emergence of stress-resistant subpopulations. Disruption of epigenetic control does not promote selection of genetically defined subclones or favor a phenotypic switch in response to environmental changes. Instead, it prevents cells from mounting an efficient stress response via modulation of global transcriptional activity. This "transcriptional numbness" lowers the probability of cell death at early stages, increasing the chance of long-term adaptation at the population level. Our findings provide a mechanistic explanation for the widespread selection of subclonal epigenetic-related mutations in cancer and uncover phenotypic inertia as a cellular trait that drives subclone expansion.


Subject(s)
Neoplasms , Humans , Mutation , Neoplasms/genetics , Neoplasms/pathology , Phenotype
8.
PLoS Comput Biol ; 18(10): e1009508, 2022 10.
Article in English | MEDLINE | ID: mdl-36197919

ABSTRACT

The modelling of many real-world problems relies on computationally heavy simulations of randomly interacting individuals or agents. However, the values of the parameters that underlie the interactions between agents are typically poorly known, and hence they need to be inferred from macroscopic observations of the system. Since statistical inference rests on repeated simulations to sample the parameter space, the high computational expense of these simulations can become a stumbling block. In this paper, we compare two ways to mitigate this issue in a Bayesian setting through the use of machine learning methods: One approach is to construct lightweight surrogate models to substitute the simulations used in inference. Alternatively, one might altogether circumvent the need for Bayesian sampling schemes and directly estimate the posterior distribution. We focus on stochastic simulations that track autonomous agents and present two case studies: tumour growths and the spread of infectious diseases. We demonstrate that good accuracy in inference can be achieved with a relatively small number of simulations, making our machine learning approaches orders of magnitude faster than classical simulation-based methods that rely on sampling the parameter space. However, we find that while some methods generally produce more robust results than others, no algorithm offers a one-size-fits-all solution when attempting to infer model parameters from observations. Instead, one must choose the inference technique with the specific real-world application in mind. The stochastic nature of the considered real-world phenomena poses an additional challenge that can become insurmountable for some approaches. Overall, we find machine learning approaches that create direct inference machines to be promising for real-world applications. We present our findings as general guidelines for modelling practitioners.


Subject(s)
Algorithms , Biochemical Phenomena , Bayes Theorem , Humans
9.
Microbiologyopen ; 11(4): e1313, 2022 08.
Article in English | MEDLINE | ID: mdl-36004556

ABSTRACT

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a staple in clinical microbiology laboratories. Protein-profiling of bacteria using this technique has accelerated the identification of pathogens in diagnostic workflows. Recently, lipid profiling has emerged as a way to complement bacterial identification where protein-based methods fail to provide accurate results. This study aimed to address the challenge of rapid discrimination between Escherichia coli and Shigella spp. using MALDI-TOF MS in the negative ion mode for lipid profiling coupled with machine learning. Both E. coli and Shigella species are closely related; they share high sequence homology, reported for 16S rRNA gene sequence similarities between E. coli and Shigella spp. exceeding 99%, and a similar protein expression pattern but are epidemiologically distinct. A bacterial collection of 45 E. coli, 48 Shigella flexneri, and 62 Shigella sonnei clinical isolates were submitted to lipid profiling in negative ion mode using the MALDI Biotyper Sirius® system after treatment with mild-acid hydrolysis (acetic acid 1% v/v for 15 min at 98°C). Spectra were then analyzed using our in-house machine learning algorithm and top-ranked features used for the discrimination of the bacterial species. Here, as a proof-of-concept, we showed that lipid profiling might have the potential to differentiate E. coli from Shigella species using the analysis of the top five ranked features obtained by MALDI-TOF MS in the negative ion mode of the MALDI Biotyper Sirius® system. Based on this new approach, MALDI-TOF MS analysis of lipids might help pave the way toward these goals.


Subject(s)
Escherichia coli Infections , Shigella , Bacteria , Escherichia coli , Humans , Lipids , Machine Learning , RNA, Ribosomal, 16S , Shigella flexneri , Shigella sonnei , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
BMC Bioinformatics ; 23(1): 236, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35715748

ABSTRACT

BACKGROUND: Single cell RNA-sequencing (scRNA-seq) has very rapidly become the new workhorse of modern biology providing an unprecedented global view on cellular diversity and heterogeneity. In particular, the structure of gene-gene expression correlation contains information on the underlying gene regulatory networks. However, interpretation of scRNA-seq data is challenging due to specific experimental error and biases that are unique to this kind of data including drop-out (or technical zeros). METHODS: To deal with this problem several methods for imputation of zeros for scRNA-seq have been developed. However, it is not clear how these processing steps affect inference of genetic networks from single cell data. Here, we introduce Biomodelling.jl, a tool for generation of synthetic scRNA-seq data using multiscale modelling of stochastic gene regulatory networks in growing and dividing cells. RESULTS: Our tool produces realistic transcription data with a known ground truth network topology that can be used to benchmark different approaches for gene regulatory network inference. Using this tool we investigate the impact of different imputation methods on the performance of several network inference algorithms. CONCLUSIONS: Biomodelling.jl provides a versatile and useful tool for future development and benchmarking of network inference approaches using scRNA-seq data.


Subject(s)
Benchmarking , Single-Cell Analysis , Gene Expression Profiling/methods , Gene Regulatory Networks , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software
11.
Life Sci Alliance ; 5(5)2022 05.
Article in English | MEDLINE | ID: mdl-35228260

ABSTRACT

Cellular resources are limited and their relative allocation to gene expression programmes determines physiological states and global properties such as the growth rate. Here, we determined the importance of the growth rate in explaining relative changes in protein and mRNA levels in the simple eukaryote Schizosaccharomyces pombe grown on non-limiting nitrogen sources. Although expression of half of fission yeast genes was significantly correlated with the growth rate, this came alongside wide-spread nutrient-specific regulation. Proteome and transcriptome often showed coordinated regulation but with notable exceptions, such as metabolic enzymes. Genes positively correlated with growth rate participated in every level of protein production apart from RNA polymerase II-dependent transcription. Negatively correlated genes belonged mainly to the environmental stress response programme. Critically, metabolic enzymes, which represent ∼55-70% of the proteome by mass, showed mostly condition-specific regulation. In summary, we provide a rich account of resource allocation to gene expression in a simple eukaryote, advancing our basic understanding of the interplay between growth-rate-dependent and nutrient-specific gene expression.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Gene Expression Regulation, Fungal , Nutrients , Proteome/genetics , Proteome/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Transcriptome/genetics
12.
PNAS Nexus ; 1(3): pgac069, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36741458

ABSTRACT

Genotypic and phenotypic adaptation is the consequence of ongoing natural selection in populations and is key to predicting and preventing drug resistance. Whereas classic antibiotic persistence is all-or-nothing, here we demonstrate that an antibiotic resistance gene displays linear dose-responsive selection for increased expression in proportion to rising antibiotic concentration in growing Escherichia coli populations. Furthermore, we report the potentially wide-spread nature of this form of emergent gene expression (EGE) by instantaneous phenotypic selection process under bactericidal and bacteriostatic antibiotic treatment, as well as an amino acid synthesis pathway enzyme under a range of auxotrophic conditions. We propose an analogy to Ohm's law in electricity (V = IR), where selection pressure acts similarly to voltage (V), gene expression to current (I), and resistance (R) to cellular machinery constraints and costs. Lastly, mathematical modeling using agent-based models of stochastic gene expression in growing populations and Bayesian model selection reveal that the EGE mechanism requires variability in gene expression within an isogenic population, and a cellular "memory" from positive feedbacks between growth and expression of any fitness-conferring gene. Finally, we discuss the connection of the observed phenomenon to a previously described general fluctuation-response relationship in biology.

13.
Front Cell Dev Biol ; 9: 640856, 2021.
Article in English | MEDLINE | ID: mdl-34084768

ABSTRACT

Individual cells and organisms experience perturbations from internal and external sources, yet manage to buffer these to produce consistent phenotypes, a property known as robustness. While phenotypic robustness has often been examined in unicellular organisms, it has not been sufficiently studied in multicellular animals. Here, we investigate phenotypic robustness in Caenorhabditis elegans seam cells. Seam cells are stem cell-like epithelial cells along the lateral edges of the animal, which go through asymmetric and symmetric divisions contributing cells to the hypodermis and neurons, while replenishing the stem cell reservoir. The terminal number of seam cells is almost invariant in the wild-type population, allowing the investigation of how developmental precision is achieved. We report here that a loss-of-function mutation in the highly conserved N-acetyltransferase nath-10/NAT10 increases seam cell number variance in the isogenic population. RNA-seq analysis revealed increased levels of mRNA transcript variability in nath-10 mutant populations, which may have an impact on the phenotypic variability observed. Furthermore, we found disruption of Wnt signaling upon perturbing nath-10 function, as evidenced by changes in POP-1/TCF nuclear distribution and ectopic activation of its GATA transcription factor target egl-18. These results highlight that NATH-10/NAT-10 can influence phenotypic variability partly through modulation of the Wnt signaling pathway.

14.
J R Soc Interface ; 18(178): 20210274, 2021 05.
Article in English | MEDLINE | ID: mdl-34034535

ABSTRACT

The chemical master equation and the Gillespie algorithm are widely used to model the reaction kinetics inside living cells. It is thereby assumed that cell growth and division can be modelled through effective dilution reactions and extrinsic noise sources. We here re-examine these paradigms through developing an analytical agent-based framework of growing and dividing cells accompanied by an exact simulation algorithm, which allows us to quantify the dynamics of virtually any intracellular reaction network affected by stochastic cell size control and division noise. We find that the solution of the chemical master equation-including static extrinsic noise-exactly agrees with the agent-based formulation when the network under study exhibits stochastic concentration homeostasis, a novel condition that generalizes concentration homeostasis in deterministic systems to higher order moments and distributions. We illustrate stochastic concentration homeostasis for a range of common gene expression networks. When this condition is not met, we demonstrate by extending the linear noise approximation to agent-based models that the dependence of gene expression noise on cell size can qualitatively deviate from the chemical master equation. Surprisingly, the total noise of the agent-based approach can still be well approximated by extrinsic noise models.


Subject(s)
Algorithms , Models, Biological , Cell Size , Computer Simulation , Gene Expression , Kinetics , Stochastic Processes
15.
J Theor Biol ; 509: 110494, 2021 01 21.
Article in English | MEDLINE | ID: mdl-32979339

ABSTRACT

The tumor control probability (TCP) is a metric used to calculate the probability of controlling or eradicating tumors through radiotherapy. Cancer cells vary in their response to radiation, and although many factors are involved, the tumor microenvironment is a crucial one that determines radiation efficacy. The tumor microenvironment plays a significant role in cancer initiation and propagation, as well as in treatment outcome. We have developed stochastic formulations to study the impact of arbitrary microenvironmental fluctuations on TCP and extinction probability (EP), which is defined as the probability of cancer cells removal in the absence of treatment. Since the derivation of analytical solutions are not possible for complicated cases, we employ a modified Gillespie algorithm to analyze TCP and EP, considering the random variations in cellular proliferation and death rates. Our results show that increasing the standard deviation in kinetic rates initially enhances the probability of tumor eradication. However, if the EP does not reach a probability of 1, the increase in the standard deviation subsequently has a negative impact on probability of cancer cells removal, decreasing the EP over time. The greatest effect on EP has been observed when both birth and death rates are being randomly modified and are anticorrelated. In addition, similar results are observed for TCP, where radiotherapy is included, indicating that increasing the standard deviation in kinetic rates at first enhances the probability of tumor eradication. But, it has a negative impact on treatment effectiveness if the TCP does not reach a probability of 1.


Subject(s)
Neoplasms , Algorithms , Humans , Neoplasms/therapy , Probability , Tumor Microenvironment
16.
Nat Ecol Evol ; 4(11): 1539-1548, 2020 11.
Article in English | MEDLINE | ID: mdl-32868918

ABSTRACT

Epigenetic regulation involves changes in gene expression independent of DNA sequence variation that are inherited through cell division. In addition to a fundamental role in cell differentiation, some epigenetic changes can also be transmitted transgenerationally through meiosis. Epigenetic alterations (epimutations) could thus contribute to heritable variation within populations and be subject to evolutionary processes such as natural selection and drift. However, the rate at which epimutations arise and their typical persistence are unknown, making it difficult to evaluate their potential for evolutionary adaptation. Here, we perform a genome-wide study of epimutations in a metazoan organism. We use experimental evolution to characterize the rate, spectrum and stability of epimutations driven by small silencing RNAs in the model nematode Caenorhabditis elegans. We show that epimutations arise spontaneously at a rate approximately 25 times greater than DNA sequence changes and typically have short half-lives of two to three generations. Nevertheless, some epimutations last at least ten generations. Epimutations mediated by small RNAs may thus contribute to evolutionary processes over a short timescale but are unlikely to bring about long-term divergence in the absence of selection.


Subject(s)
Caenorhabditis elegans , Epigenesis, Genetic , Animals , Caenorhabditis elegans/genetics , Genome-Wide Association Study , Mutation , Selection, Genetic
17.
PLoS Comput Biol ; 16(9): e1008245, 2020 09.
Article in English | MEDLINE | ID: mdl-32986690

ABSTRACT

Universal observations in Biology are sometimes described as "laws". In E. coli, experimental studies performed over the past six decades have revealed major growth laws relating ribosomal mass fraction and cell size to the growth rate. Because they formalize complex emerging principles in biology, growth laws have been instrumental in shaping our understanding of bacterial physiology. Here, we discovered a novel size law that connects cell size to the inverse of the metabolic proteome mass fraction and the active fraction of ribosomes. We used a simple whole-cell coarse-grained model of cell physiology that combines the proteome allocation theory and the structural model of cell division. This integrated model captures all available experimental data connecting the cell proteome composition, ribosome activity, division size and growth rate in response to nutrient quality, antibiotic treatment and increased protein burden. Finally, a stochastic extension of the model explains non-trivial correlations observed in single cell experiments including the adder principle. This work provides a simple and robust theoretical framework for studying the fundamental principles of cell size determination in unicellular organisms.


Subject(s)
Bacterial Physiological Phenomena , Escherichia coli , Models, Biological , Models, Molecular , Anti-Bacterial Agents/pharmacology , Culture Media/pharmacology , Escherichia coli/cytology , Escherichia coli/drug effects , Escherichia coli/physiology , Proteome/physiology , Ribosomes/physiology , Systems Biology
18.
Bioinformatics ; 36(17): 4616-4625, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32437529

ABSTRACT

MOTIVATION: Recent developments in technology have enabled researchers to collect multiple OMICS datasets for the same individuals. The conventional approach for understanding the relationships between the collected datasets and the complex trait of interest would be through the analysis of each OMIC dataset separately from the rest, or to test for associations between the OMICS datasets. In this work we show that integrating multiple OMICS datasets together, instead of analysing them separately, improves our understanding of their in-between relationships as well as the predictive accuracy for the tested trait. Several approaches have been proposed for the integration of heterogeneous and high-dimensional (p≫n) data, such as OMICS. The sparse variant of canonical correlation analysis (CCA) approach is a promising one that seeks to penalize the canonical variables for producing sparse latent variables while achieving maximal correlation between the datasets. Over the last years, a number of approaches for implementing sparse CCA (sCCA) have been proposed, where they differ on their objective functions, iterative algorithm for obtaining the sparse latent variables and make different assumptions about the original datasets. RESULTS: Through a comparative study we have explored the performance of the conventional CCA proposed by Parkhomenko et al., penalized matrix decomposition CCA proposed by Witten and Tibshirani and its extension proposed by Suo et al. The aforementioned methods were modified to allow for different penalty functions. Although sCCA is an unsupervised learning approach for understanding of the in-between relationships, we have twisted the problem as a supervised learning one and investigated how the computed latent variables can be used for predicting complex traits. The approaches were extended to allow for multiple (more than two) datasets where the trait was included as one of the input datasets. Both ways have shown improvement over conventional predictive models that include one or multiple datasets. AVAILABILITY AND IMPLEMENTATION: https://github.com/theorod93/sCCA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Multifactorial Inheritance , Humans , Multivariate Analysis , Phenotype
19.
Sci Rep ; 10(1): 5160, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198427

ABSTRACT

An important sustainable development goal for any country is to ensure food security by producing a sufficient and safe food supply. This is the case for bovine milk where addition of non-dairy milks such as vegetables (e.g., soya or coconut) has become a common source of adulteration and fraud. Conventionally, gas chromatography techniques are used to detect key lipids (e.g., triacylglycerols) has an effective read-out of assessing milks origins and to detect foreign milks in bovine milks. However, such approach requires several sample preparation steps and a dedicated laboratory environment, precluding a high throughput process. To cope with this need, here, we aimed to develop a novel and simple method without organic solvent extractions for the detection of bovine and non-dairy milks based on lipids fingerprint by routine MALDI-TOF mass spectrometry (MS). The optimized method relies on the simple dilution of milks in water followed by MALDI-TOF MS analyses in the positive linear ion mode and using a matrix consisting of a 9:1 mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid (super-DHB) solubilized at 10 mg/mL in 70% ethanol. This sensitive, inexpensive, and rapid method has potential for use in food authenticity applications.


Subject(s)
Lipids/analysis , Milk/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Benzaldehydes/chemistry , Cattle , Gas Chromatography-Mass Spectrometry/methods , Gentisates/chemistry , Nuts/chemistry , Soy Milk/chemistry
20.
Curr Biol ; 30(7): 1217-1230.e7, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32059768

ABSTRACT

Cell size varies during the cell cycle and in response to external stimuli. This requires the tight coordination, or "scaling," of mRNA and protein quantities with the cell volume in order to maintain biomolecule concentrations and cell density. Evidence in cell populations and single cells indicates that scaling relies on the coordination of mRNA transcription rates with cell size. Here, we use a combination of single-molecule fluorescence in situ hybridization (smFISH), time-lapse microscopy, and mathematical modeling in single fission yeast cells to uncover the precise molecular mechanisms that control transcription rates scaling with cell size. Linear scaling of mRNA quantities is apparent in single fission yeast cells during a normal cell cycle. Transcription of both constitutive and periodic genes is a Poisson process with transcription rates scaling with cell size and without evidence for transcriptional off states. Modeling and experimental data indicate that scaling relies on the coordination of RNA polymerase II (RNAPII) transcription initiation rates with cell size and that RNAPII is a limiting factor. We show using real-time quantitative imaging that size increase is accompanied by a rapid concentration-independent recruitment of RNAPII onto chromatin. Finally, we find that, in multinucleated cells, scaling is set at the level of single nuclei and not the entire cell, making the nucleus a determinant of scaling. Integrating our observations in a mechanistic model of RNAPII-mediated transcription, we propose that scaling of gene expression with cell size is the consequence of competition between genes for limiting RNAPII.


Subject(s)
RNA Polymerase II/genetics , RNA, Fungal/genetics , Schizosaccharomyces/physiology , Transcription, Genetic , RNA Polymerase II/metabolism , RNA, Fungal/metabolism , Schizosaccharomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...