Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Basic Med Sci ; 23(10): 1360-1366, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33149871

ABSTRACT

OBJECTIVES: Thymoquinone (TQ) has valuable medical properties like anticancer effects. Development of multidrug resistance (MDR) phenotype is one of the most important factors in failure of cancer chemotherapy. The aim of this study was to evaluate the mode of interaction of TQ and MDR1, a major MDR-related protein in gastric cancer drug resistant EPG85-257RDB cells, and its parental non-resistant EPG85-257 cells. MATERIALS AND METHODS: MTT assay was used to assess the effects of TQ and doxorubicin (DOX) on cell viability of tested cell lines and TQ effect on pump performance. HPLC analyses were used to measure the input and output of TQ in EPG85-257RDB cells. Molecular docking studies were used to identify interactions between TQ and MDR1. RESULTS: TQ inhibited cell viability in a time and concentration-dependent manner. Co-treatment of the cells with TQ and DOX did not significantly affect the amount of cell viability in comparison with DOX treatment alone. The HPLC analyses showed that more than 90% of TQ entered to EPG85-257RDB during 1 hr of treatment with TQ, but it was unable to exit from the cells. Moreover, there was no difference between influx and efflux amount of TQ in cells with inhibited and non-inhibited MDR1 transporters. Molecular docking studies revealed that TQ had a higher inhibitory constant to bind to active site of MDR1 protein as compared to specific inhibitor (verapamil) and substrate (vinblastine) of this transporter. CONCLUSION: These results proposed that TQ does not work as an inhibitor or a substrate of MDR1 transporter.

2.
Arch Microbiol ; 202(9): 2525-2532, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32653933

ABSTRACT

The adverse effects of chemical pesticides on human health and environment cannot be ignored, hence it seems that novel alternative compounds should be applied to control plant pathogens. Among various alternative sources, natural compounds such as plant essential oils, plant extracts and recombinant antimicrobial peptides are of significance. The aim of the present study was to investigate antimicrobial activity of plants essential oils and plant extracts of six medicinal plants (Lippia citriodora, Ferula gummosa, Bunium persicum, Mentha piperita, Plantago major and Salvadora persica) along with a chimera peptide of camel lactoferrin, which is the most important antimicrobial component of camel milk, against Pseudomonas tolaasii and Trichoderma harzianum as pathogens of white button mushroom. The antibacterial activity test was conducted under in vitro conditions through disc diffusion method. The results showed that chimera camel lactoferrin peptide, with the highest amount of inhibitory zone (14.63 mm in 20 µg/mL concentration), has a significant difference in antibacterial activity compared to other treatments. Ferula gummosa conferred no antibacterial activity. Also, the results of antifungal effects indicated that plant essential oils and extracts have more antifungal activity than recombinant peptide. Generally, L. citriodora, B. persicum, M. piperita treatments could completely prevent growth of fungal in in vitro conditions. Therefore, using the mentioned plants can be a good replacement for reducing the chemical pesticides against pathogenic agents of button mushroom, without any adverse effects on environment and human health.


Subject(s)
Lactoferrin/pharmacology , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Pseudomonas/drug effects , Trichoderma/drug effects , Agaricus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology , Fungi/drug effects , Microbial Sensitivity Tests , Milk/chemistry , Plant Oils/pharmacology , Plants, Medicinal/chemistry
3.
Probiotics Antimicrob Proteins ; 10(4): 787-793, 2018 12.
Article in English | MEDLINE | ID: mdl-29619665

ABSTRACT

Lactoferrin is the most dominant protein in milk after casein. This protein plays a crucial role in many biological processes including the regulation of iron metabolism, induction and modulation of the immune system, the primary defense against microorganisms, inhibiting lipid peroxidation and presenting antimicrobial activity against various pathogens such as parasites, fungi, bacteria, and viruses. The major antimicrobial effect of lactoferrin is related to its N-terminal tail where different peptides for instance lactoferricin and lactoferrampin which are important for their antimicrobial abilities are present. The growth rate of bacterial cells in camel milk is lower than that of the cow milk due to having more antimicrobial compounds. In this study, we have fused a codon-optimized partial camel lactoferrcin and lactoferrampin DNA sequences in order to construct a fused peptide via a lysine. This chimeric 42-mer peptide consists of complete and partial amino acid sequence of camel lactoferrampin and lactoferricin, respectively. Human embryonic kidney 293 (HEK-293) cells were used for synthesizing this recombinant peptide. Finally, the antibacterial activities of this constructed peptide were investigated under in vitro condition. The result showed that, all construction, cloning and expression processes were successfully performed in HEK-293. One His-tag tail was added to the chimera in order to optimize the isolation and purification processes and also reduce the cost of production. Additionally, His-tag retained the antimicrobial activity of the chimera. The antimicrobial tests showed that the growth rate in the majority of bacterial plant pathogens, including gram negative and positive bacteria, was inhibited by recombinant chimera as the level of MIC values were evaluated between 0.39 and 25.07 µg/ml for different bacterial isolates.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Lactoferrin/isolation & purification , Lactoferrin/pharmacology , Milk/chemistry , Plant Diseases/microbiology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Base Sequence , Camelus , Cattle , Gene Expression , HEK293 Cells , Humans , Lactoferrin/chemistry , Lactoferrin/genetics , Microbial Sensitivity Tests
4.
Iran J Biotechnol ; 14(3): 163-168, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28959332

ABSTRACT

BACKGROUND: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. OBJECTIVES: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomonas reinhardtii, was evaluated. Furthermore, antibacterial properties of the synthesized nanoparticles were investigated via analysis of growth and toxin production of Listeria monocytogenes. MATERIALS AND METHODS: Silver nanoparticles were synthesized by incubating 47.5 mL of fresh C. reinhardtii culture with 2.5 mL of 200 mM AgNO3 solution for 48 h. Characterization of the synthesized nano particles was performed by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS) and X-ray diffraction analysis (XRD). Concentration of biosynthesized silver nanoparticles was measured by high resolution ICP-OES spectrometer. Inhibitory effect of silver nanoparticles on L. monocytogenes growth was measured. Further, the expression of listeriolysin O was investigated by serial microdilution method and Real-Time PCR assay. RESULTS: Spherical silver nanoparticles with average size of about 10 nm were formed. The particles had inhibitory effects on bacterial growth and antagonist activity on the expression of listeriolysin O. CONCLUSIONS: C. reinhardtii has the potential to be used as an effective platform for production of silver and other nanoparticles. Silver nanoparticles had potent antibacterial properties.

5.
Plant Physiol Biochem ; 70: 188-94, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23786817

ABSTRACT

A cDNA encoding hyoscyamine 6ß-hydroxylase (H6H, EC 1.14.11.11), a bifunctional enzyme catalyzing the last two steps in the scopolamine biosynthetic pathway, was isolated from Hyoscyamus senecionis, a medicinal plant endemic to the Iranian plateau. Expression analysis indicates that Hsh6h is expressed in all tested organs of H. senecionis including roots, rhizomes, leaves, stems and flowers unlike the other tropane alkaloid producing species. In parallel to this, in leaves, levels of scopolamine, the product of H6H, were higher than the substrate hyoscyamine. These data suggest that not only does the conversion of hyoscyamine to scopolamine take place in the root, followed by translocation to aerial parts, but also accumulated hyoscyamine in the aerial parts may be converted to scopolamine by activity of HsH6H. Analysis of expression profiles of putrescine N-methyltransferase and tropinone reductase I and II genes also indicates the organ-independent expression of these genes. Here we also introduce H. senecionis as an important tropane alkaloid producing species with its thick underground parts as a source of hyoscyamine, while its leaves can be considered as a source of scopolamine.


Subject(s)
Genes, Plant , Hyoscyamine/metabolism , Hyoscyamus/metabolism , Mixed Function Oxygenases/metabolism , Plant Proteins/metabolism , Plant Structures/metabolism , Scopolamine/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Biological Transport , DNA, Complementary , Gene Expression , Hyoscyamine/genetics , Hyoscyamus/genetics , Iran , Metabolic Networks and Pathways/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mixed Function Oxygenases/genetics , Plant Proteins/genetics , Plants, Medicinal , Transcriptome
6.
Bioimpacts ; 1(4): 229-35, 2011.
Article in English | MEDLINE | ID: mdl-23678433

ABSTRACT

INTRODUCTION: Papaver somniferum is the commercial source of morphine and codeine. The isolation of effective genes involved in the morphine biosynthesis of P. somniferum is very important in the production of specific metabolites achieved using metabolic engi-neering techniques. In this pathway, the key enzyme COR is involved in the conversion of codeinone to codeine and morphinone to morphine. METHODS: the gene encoding of this enzyme was isolated using primers designed on the base of gene sequence available on (NCBI) for P. somniferum. This gene correct size around (960 bp) was first subcloned into pTZ57RIT vector then cloned into expression vectors (pBI121) between BamHI and SacI sites to allow the expression of cor gene driven by the cauliflower mosaic virus 35S pro-moter. The result was confirmed through different molecular methods e.g. PCR and en-zyme digestion by BamHI and SacI. The recombinant plasmid was transformed into the E. coli strain DH5α using a freeze-thaw method. Having selected positive colones on selection medium, plasmid was extracted by miniprep method and recombinant plasmids were selected based on PCR and digestion. The construct was then mobilized in Agrobacterium tumefaciens C58/pGV3850 (KmR RifR). After gene transformation to P. somniferum plants, the agroinfiltration method was also used for transient expression of COR enzyme. RESULTS: evaluation results showed that morphine and codeine were detectable in the leaves of transgenic plants containing cor transgene and there was significant difference in the final production. After completing this experiment for three times, results showed that in 11 sets from 15 sets of leaves experiment tested, main alkaloids (codeine, morphine, papaverin, noscapine and thebaine) were detectable. CONCLUSION: Whereas no signal was detected in non-infiltrated control leaves or in leaves infiltrated with non-recombinant bacteria for morphine and codeine, others such as thebaine and papaverine were detectable.

SELECTION OF CITATIONS
SEARCH DETAIL
...