Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 25(10): 1328-1336, 2023.
Article in English | MEDLINE | ID: mdl-37154395

ABSTRACT

Plant biomass is one of the available and economic biomaterials used to remove environmental pollutants. The presence of colored compounds in aqueous solutions is one of the problems that can be solved by biological methods. Herein, the efficiency of available and inexpensive biomass obtained from Lantana camara L. stem for cationic dye uptake has been evaluated. The effect of operational factors, including dosage of L. camara L. stem biomass (LSB), pH of the solution, initial concentration of malachite green (MG), and residence time on the optimal conditions of analyte uptake was studied. The experimental data of adsorption studies fit with P-S-O kinetic (R2=0.999) and L.I.M (R2=0.998), indicating MG dye adsorption onto LSB occurred in monolayers due to its chemical affinity. The maximum uptake capacity of LSB for the removal of MG dye was 100 mg g-1. Thermodynamic parameters, including ΔG° (from -2.13 to -2.469 kJ  mol-1), ΔH° (+2.916 kJ  mol-1), and ΔS° (+16.934 J  mol-1 K-1) suggested that the adsorption process was endothermic and spontaneous. The results revealed that LSB considerably has potential for adsorptive removal of cationic dyes such as, MG from aquatic environments.


To the best of our knowledge, there is no report on the investigation of biomass efficiency obtained from L. camara L. stem for cationic dye biosorption. In the present research, the L. camara L. stem biomass was introduced as an inexpensive and suitable biosorbent for the adsorptive removal of cationic dyes.


Subject(s)
Lantana , Water Pollutants, Chemical , Kinetics , Adsorption , Biomass , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Thermodynamics , Coloring Agents
2.
Fish Shellfish Immunol ; 125: 101-108, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35472403

ABSTRACT

Organic acids are active substances required for improving the productivity and wellbeing of aquatic animals. Herein, the study investigated the effects of sodium propionate on growth performance, antioxidative and immune responses, and growth-related genes expression in beluga sturgeon (Huso huso). For eight weeks, fish fed sodium propionate at 0, 1.2, 2.5, and 5 g kg-1. The final weight, weight gain, and SGR were substantially increased while FCR decreased by dietary sodium propionate at 2.5 and 5 g kg-1 (P < 0.05). The expression of Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) was markedly upregulated (P < 0.05) by dietary sodium propionate in the gills and livers of beluga. The highest mRNA level of GH and IGF-1 has been observed in fish fed a 2.5 g sodium propionate/kg diet. The red blood cells count, and hemoglobin level were meaningfully increased (P < 0.05) by 2.5 and 5 g sodium propionate/kg diet compared with 0 and 1.2 g kg-1 levels. Further, the hematocrit level was increased (P < 0.05) by a dietary 5 g sodium propionate/kg diet. The total protein level and lysozyme activity were meaningfully increased (P < 0.05) by 2.5 and 5 g sodium propionate/kg diet compared with 0 and 1.2 g kg-1 levels. The highest superoxide dismutase was observed in fish fed 2.5 g sodium propionate/kg diet. Catalase activity was significantly higher in fish fed 5 g kg-1 than 1.2 g kg-1. The glutathione peroxidase activity was markedly higher in fish fed 2.5, and 5 g kg-1 than fish fed control diet. The lowest malondialdehyde levels were observed in fish fed 1.2, and 2.5 g sodium propionate/kg diets. Moreover, the highest mucosal total protein, total immunoglobulin and lysozyme were recorded in fish fed 2.5, and 5 g sodium propionate/kg diets. The obtained results indicate that dietary sodium propionate is recommended at 2.5-5 g kg-1 to improve beluga sturgeon's growth performance, feed utilization, and wellbeing.


Subject(s)
Animal Feed , Antioxidants , Adaptive Immunity , Animal Feed/analysis , Animals , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements , Fishes , Gelatin , Insulin-Like Growth Factor I/metabolism , Muramidase/metabolism , Propionates
3.
Iran J Public Health ; 45(5): 670-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27398340

ABSTRACT

BACKGROUND: Much of the environment is affected by petroleum contamination. It imposes serious health problems for humans as well as serious environmental impact. Bioremediation is an important consideration for removing environmental pollutants because, compared with other technologies, it incurrs lower costs and is environmentally compatible. METHODS: Crude oil degrading bacteria were isolated using serial dilutions of a bacterial consortium. The Taguchi experimental design L16 (4(5)) was used to optimize the biodegradation process of crude oil by the isolated strain. This investigation applied the parameters of temperature, salinity, pH, NH4Cl and FeSO4.7H2O. Modeling the kinetics of crude oil biodegradation included five batch cultivation experiments (2.5 ml/L to 40 ml/L) using crude oil as a single limiting substrate. RESULTS: Halomonas sp. MS1 was identified using identification tests. Maximum biodegradation efficiency was predicted to occur at pH=9, temperature=30 °C, salinity=2%, NH4Cl concentration=0.4 g/L and FeSO4.7H2O=0.04 g/L. After optimization, biodagradation was significantly (P<0.05) higher (i.e. 90.65%) than it results under the original conditions. Furthermore, growth kinetics modelling of bacteria in various concentrations of crude oil showed a positive correlation between increased concentration, up to 10 ml/L and bacterial growth, but this was not evident at higher concentrations (20-40 mL/L). CONCLUSION: Overall, bacteria in surface sediment samples from Kish Island have been determined as having good potential for application in oil biodegradation. Optimum amounts of the studied factors were determined successfully by applying the Taguchi experimental design and the models of Teissier and Haldane are suggested as kinetic models to describe the batch crude oil degradation behavior of MS1.

4.
J Environ Health Sci Eng ; 12(1): 114, 2014.
Article in English | MEDLINE | ID: mdl-25436114

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) biodegradation in contaminated sediment is an attractive remediation technique and its success depends on the optimal condition for the PAH-degrading isolates. The aims of the current study was to isolate and identify PAHs-degrading bacteria from surface sediments of Nayband Bay and to evaluate the efficiency of statistically based experimental design for the optimization of phenanthrene (Phe) and Fluorene (Flu) biodegradation performed by enriched consortium. PAHs degrading bacteria were isolated from surface sediments. Purified strains were then identified by 16S rDNA gene sequence analysis. Taguchi L16 (4(5)) was employed to evaluate the optimum biodegradation of Phe and Flu by the enriched consortium. Total of six gram-negative bacterial strains including Marinobacter hydrocarbonoclasticus, Roseovarius pacificus, Pseudidiomarina sediminum and 3 unidentified strains were isolated from enrichment consortium, using Fluorene (Flu) and phenanthrene (Phe) as the sole carbon and energy source. The enriched consortium showed highest degradation abilities (64.0% Flu and 58.4% Phe degraded in 7 days) in comparison to a single strain cultures or mixtures. Maximum biodegradation efficiency was occur at temperature = 35°C; pH = 8; inoculum size = 0. 4 OD600nm; salinity = 40 ppt; C/N ratio = 100:10. In conclusion our results showed that, indigenous bacteria from mangrove surface sediments of Nayband Bay have high potential to degrade Flu and Phe with the best results achieved when enriched consortium was used.

5.
J Food Sci Technol ; 51(5): 929-35, 2014 May.
Article in English | MEDLINE | ID: mdl-24803700

ABSTRACT

Refrigerated storage is the simplest method of preserving for short time handling and storage of fish. The objective of this study was to investigate the effects of refrigerated storage on the microstructure, physicochemical (proximate composition, pH, TVB-N, LHC), microbial (total mesophilic count, TMC and total psychrotrophic count, TPC) and sensory changes of grouper (Epinephelus coioides) fillets during a 14-day period at +4 °C. The estimated TVB-N value was significantly different in all days of storage. TPC value reached to a limiting level for human consumption (10(7) micro-organism/g) after the 10th day of storage while TMC remained under the limited acceptability until 14 days. Cellular tissue damage was observed after 7 days of storage. The shelf life of grouper was approximately ~8-9 days according to the results of sensory, chemical and microbial analysis.

6.
Article in English | MEDLINE | ID: mdl-20403756

ABSTRACT

Methylmercury (MeHg) is the most toxic form of mercury which is bioaccumulated in the aquatic food chain. It has been shown that one of the main targets of MeHg toxicity is the brain, but there is little knowledge of the molecular mechanisms of its toxic effects. In this work we used a proteomics analysis to determine the changes in the brain proteome of juvenile beluga (Huso huso) exposed to dietary MeHg. The juvenile beluga were fed the diet containing 0.8 ppm MeHg for 70 days. Proteins of the brain tissue were analyzed using two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry. We found eight proteins with significant altered expression level in the fish brain exposed to MeHg. These proteins are involved in different cell functions including cell metabolism, protein folding, cell division, and signal transduction. Our results support the idea that MeHg exerts its toxicity through oxidative stress induction and apoptotic effects. They also suggest that chronic MeHg exposure would induce an important metabolic deficiency in the brain. These findings provide basic information to understand possible mechanisms of MeHg toxicity in aquatic ecosystems.


Subject(s)
Brain/metabolism , Fishes/metabolism , Methylmercury Compounds/toxicity , Proteome/analysis , Proteome/drug effects , Animals , Brain/drug effects , Electrophoresis, Gel, Two-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...