Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 41(34): 5003-5017, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37407405

ABSTRACT

As the COVID-19 pandemic transitions into endemicity, seasonal boosters are a plausible reality across the globe. We hypothesize that intranasal vaccines can provide better protection against asymptomatic infections and more transmissible variants of SARS-CoV-2. To formulate a protective intranasal vaccine, we utilized a VLP-based platform. Hepatitis B surface antigen-based virus like particles (VLP) linked with receptor binding domain (RBD) antigen were paired with the TLR4-based agonist adjuvant, BECC 470. K18-hACE2 mice were primed and boosted at four-week intervals with either VLP-RBD-BECC or mRNA-1273. Both VLP-RBD-BECC and mRNA-1273 vaccination resulted in production of RBD-specific IgA antibodies in serum. RBD-specific IgA was also detected in the nasal wash and lung supernatants and were highest in VLP-RBD-BECC vaccinated mice. Interestingly, VLP-RBD-BECC vaccinated mice showed slightly lower levels of pre-challenge IgG responses, decreased RBD-ACE2 binding inhibition, and lower neutralizing activity in vitro than mRNA-1273 vaccinated mice. Both VLP-RBD-BECC and mRNA-1273 vaccinated mice were protected against challenge with a lethal dose of Delta variant SARS-CoV-2. Both vaccines limited viral replication and viral RNA burden in the lungs of mice. CXCL10 is a biomarker of severe SARS-CoV-2 infection and we observed both vaccines limited expression of serum and lung CXCL10. Strikingly, VLP-RBD-BECC when administered intranasally, limited lung inflammation at early timepoints that mRNA-1273 vaccination did not. VLP-RBD-BECC immunization elicited antibodies that do recognize SARS-CoV-2 Omicron variant. However, VLP-RBD-BECC immunized mice were protected from Omicron challenge with low viral burden. Conversely, mRNA-1273 immunized mice had low to no detectable virus in the lungs at day 2. Together, these data suggest that VLP-based vaccines paired with BECC adjuvant can be used to induce protective mucosal and systemic responses against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , 2019-nCoV Vaccine mRNA-1273 , Pandemics , COVID-19/prevention & control , Adjuvants, Immunologic , Immunoglobulin A , Antibodies, Viral , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...