Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Environ Monit Assess ; 196(9): 794, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112821

ABSTRACT

Rice intake represents a significant pathway through which humans accumulate heavy metals. This study presents a comprehensive analysis of heavy metal and pesticide contamination in rice cultivars irrigated with industrial wastewater near Dhaka, Bangladesh, a region heavily influenced by industrial activities. This study employed a unique methodology that not only quantified the concentrations of heavy metals and pesticide residues in rice grains but also extended to evaluating the physicochemical properties of rice stems, husks, soil, and irrigation water. The findings revealed alarmingly high levels of heavy metals such as lead, cadmium, chromium, nickel, and mercury in the soil and irrigation water, with concentrations in some cases exceeding the World Health Organization safety thresholds by 2 to 15 times. Notably, the rice grains also exhibited significant contamination, including substantial amounts of diazinon and fenitrothion pesticides, exceeding the established safety limits. The study employed hazard quotients (HQs) and cancer risk (CR) assessments to evaluate the potential health risks associated with the consumption of contaminated rice. The results indicated HQ values were greater than 1 for rice grains across the sampled fields, suggesting a considerable non-carcinogenic health risk, particularly from lead exposure, which was found at levels twice the standard limit in all the sampling fields. Moreover, the CR values for As, Pb, Cd, Co, and Mn highlighted a significant carcinogenic risk in several instances.


Subject(s)
Agricultural Irrigation , Environmental Monitoring , Metals, Heavy , Oryza , Pesticides , Soil Pollutants , Metals, Heavy/analysis , Oryza/chemistry , Bangladesh , Risk Assessment , Pesticides/analysis , Soil Pollutants/analysis , Food Contamination/analysis , Humans , Water Pollutants, Chemical/analysis
2.
Environ Monit Assess ; 196(5): 468, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656463

ABSTRACT

In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.


Subject(s)
Air Pollutants , Environmental Monitoring , Metals, Heavy , Particulate Matter , Plant Leaves , Plant Leaves/chemistry , Air Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Particulate Matter/analysis , Mangifera/chemistry , Bangladesh , Psidium/chemistry
3.
Chemosphere ; 309(Pt 2): 136794, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36220426

ABSTRACT

Due to rapid urbanization and fast economic development, aerosol pollution is a serious environmental issue, especially in Bangladesh. Based on bioaccessibility and respiratory deposition doses (RDD), health risks of PM2.5 and PM10 bound 15 (fifteen) metals were investigated at fourteen urban sites (roadside, marketplace, industrial, and commercial areas). Sampling campaigns were conducted over four seasons (winter, summer, rainy, and autumn) from December 2020 to November 2021. A beta attenuation mass analyzer measured particulate matter concentrations in ambient air. The metals in PM fractions were analyzed by X-ray fluorescence spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). The airborne trace metals (Cd, As, Zn, Pb, Cr, Cu, Ni) with high enrichment factors indicate anthropogenic sources. The positive matrix factorization (PMF) categorized these elements as originating from automobile exhaust, industrial emissions, and solid waste/coal combustion, whereas the geologic elements came from earth crust/soil dust. During the winter, most of the air mass trajectories arrived from India across the land (82%) and Indo Gangetic Plain (IGP) region to the sampling sites, which may have aided in the transport of pollutants. The deposition flux of metals illustrated that compared to PM2.5, PM10 deposited a higher amount of metals in the upper airways (81.96%). In comparison, PM2.5 accumulates more elevated amounts of metals in alveolar regions (11.77%), due to the ability of fine particles to penetrate deeper into the lower pulmonary region. Among age groups, an adult inhales a higher amount of metals than a child, on average 0.103 mg and 0.08 mg of metals per day via PM2.5, respectively. Acute health impacts are caused by the deposited cancer-causing metals in alveolar tissue, which circulates through the bloodstream and affects several organs. Prolonged exposure to these carcinogenic metals poses significant health risks.


Subject(s)
Air Pollutants , Adult , Child , Humans , Air Pollutants/analysis , Vehicle Emissions/analysis , Seasons , Environmental Monitoring , Solid Waste/analysis , Bangladesh , Cadmium/analysis , Lead/analysis , Particulate Matter/analysis , Dust/analysis , Coal/analysis , Aerosols/analysis , Soil
SELECTION OF CITATIONS
SEARCH DETAIL