Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1137069, 2023.
Article in English | MEDLINE | ID: mdl-37346047

ABSTRACT

Molecular characterization of antibody immunity and human antibody discovery is mainly carried out using peripheral memory B cells, and occasionally plasmablasts, that express B cell receptors (BCRs) on their cell surface. Despite the importance of plasma cells (PCs) as the dominant source of circulating antibodies in serum, PCs are rarely utilized because they do not express surface BCRs and cannot be analyzed using antigen-based fluorescence-activated cell sorting. Here, we studied the antibodies encoded by the entire mature B cell populations, including PCs, and compared the antibody repertoires of bone marrow and spleen compartments elicited by immunization in a human immunoglobulin transgenic mouse strain. To circumvent prior technical limitations for analysis of plasma cells, we applied single-cell antibody heavy and light chain gene capture from the entire mature B cell repertoires followed by yeast display functional analysis using a cytokine as a model immunogen. We performed affinity-based sorting of antibody yeast display libraries and large-scale next-generation sequencing analyses to follow antibody lineage performance, with experimental validation of 76 monoclonal antibodies against the cytokine antigen that identified three antibodies with exquisite double-digit picomolar binding affinity. We observed that spleen B cell populations generated higher affinity antibodies compared to bone marrow PCs and that antigen-specific splenic B cells had higher average levels of somatic hypermutation. A degree of clonal overlap was also observed between bone marrow and spleen antibody repertoires, indicating common origins of certain clones across lymphoid compartments. These data demonstrate a new capacity to functionally analyze antigen-specific B cell populations of different lymphoid organs, including PCs, for high-affinity antibody discovery and detailed fundamental studies of antibody immunity.


Subject(s)
Bone Marrow , Plasma Cells , Mice , Animals , Humans , Mice, Transgenic , Spleen , Saccharomyces cerevisiae , Antibodies, Monoclonal , Receptors, Antigen, B-Cell/genetics , Antibody Formation , Cytokines
2.
Sci Rep ; 9(1): 14261, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582818

ABSTRACT

The relationship between the immune repertoire and the physiopathological status of individuals is essential to apprehend the genesis and the evolution of numerous pathologies. Nevertheless, the methodological approaches to understand these complex interactions are challenging. We performed a study evaluating the diversity harbored by different immune repertoires as a function of their physiopathological status. In this study, we base our analysis on a murine scFv library previously described and representing four different immune repertoires: i) healthy and naïve, ii) healthy and immunized, iii) autoimmune prone and naïve, and iv) autoimmune prone and immunized. This library, 2.6 × 109 in size, is submitted to high throughput sequencing (Next Generation Sequencing, NGS) in order to analyze the gene subgroups encoding for immunoglobulins. A comparative study of the distribution of immunoglobulin gene subgroups present in the four libraries has revealed shifts in the B cell repertoire originating from differences in genetic background and immunological status of mice.


Subject(s)
B-Lymphocytes/immunology , Genetic Background , Mice/genetics , Single-Chain Antibodies/immunology , Animals , Autoimmunity , B-Lymphocytes/metabolism , Gene Library , Immunization , Immunogenetic Phenomena , Mice/immunology , Mice, Inbred BALB C , Single-Chain Antibodies/genetics
3.
FEBS J ; 284(4): 634-653, 2017 02.
Article in English | MEDLINE | ID: mdl-28075071

ABSTRACT

ß-lactamase enzymes responsible for bacterial resistance to antibiotics are among the most important health threats to the human population today. Understanding the increasingly vast structural motifs responsible for the catalytic mechanism of ß-lactamases will help improve the future design of new generation antibiotics and mechanism-based inhibitors of these enzymes. Here we report the construction of a large murine single chain fragment variable (scFv) phage display library of size 2.7 × 109 with extended diversity by combining different mouse models. We have used two molecularly different inhibitors of the R-TEM ß-lactamase as targets for selection of catalytic antibodies with ß-lactamase activity. This novel methodology has led to the isolation of five antibody fragments, which are all capable of hydrolyzing the ß-lactam ring. Structural modeling of the selected scFv has revealed the presence of different motifs in each of the antibody fragments potentially responsible for their catalytic activity. Our results confirm (a) the validity of using our two target inhibitors for the in vitro selection of catalytic antibodies endowed with ß-lactamase activity, and (b) the plasticity of the ß-lactamase active site responsible for the wide resistance of these enzymes to clinically available inhibitors and antibiotics.


Subject(s)
Antibodies, Catalytic/chemistry , Penicillins/chemistry , Peptide Library , Single-Chain Antibodies/chemistry , beta-Lactamases/chemistry , beta-Lactams/chemistry , Amino Acid Sequence , Animals , Antibodies, Catalytic/biosynthesis , Antibodies, Catalytic/immunology , Catalytic Domain , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrolysis , Immunization , Kinetics , Mice , Models, Molecular , Penicillins/administration & dosage , Penicillins/immunology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/immunology , Structure-Activity Relationship , Substrate Specificity , beta-Lactamases/biosynthesis , beta-Lactamases/immunology , beta-Lactams/metabolism
4.
J Immunol Methods ; 407: 26-34, 2014 May.
Article in English | MEDLINE | ID: mdl-24681277

ABSTRACT

Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library.


Subject(s)
Bacteriophages/genetics , Cell Surface Display Techniques , DNA Restriction Enzymes/metabolism , Nucleic Acid Amplification Techniques/methods , Single-Chain Antibodies/metabolism , Animals , Cloning, Molecular , DNA Restriction Enzymes/genetics , Genetic Vectors/genetics , Mice , Mice, Inbred Strains , Single-Chain Antibodies/genetics
5.
Biotechnol Lett ; 36(7): 1369-79, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24652545

ABSTRACT

Catalytic antibodies are immunoglobulins endowed with enzymatic properties. Discovered in the second part of the 1980s, the enthusiasm they initially aroused was counterbalanced by the difficulty of their production and their low catalytic rates. Nevertheless, improvements in expression systems and engineering technologies, combined with various studies suggesting that catalytic antibodies play a role in the immune system, have opened the way to new applications for these proteins. Herein we review catalytic antibodies from a biotechnological point of view, focusing our study on the different production methods, expression systems and their potential clinical applications dedicated to these proteins.


Subject(s)
Antibodies, Catalytic/isolation & purification , Antibodies, Catalytic/metabolism , Biotechnology/methods , Antibodies, Catalytic/genetics , Cell Surface Display Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...