Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 11: 1347550, 2024.
Article in English | MEDLINE | ID: mdl-38356661

ABSTRACT

Artificial intelligence (AI) is a fast-paced technological advancement in terms of its application to various fields of science and technology. In particular, AI has the potential to play various roles in veterinary clinical practice, enhancing the way veterinary care is delivered, improving outcomes for animals and ultimately humans. Also, in recent years, the emergence of AI has led to a new direction in biomedical research, especially in translational research with great potential, promising to revolutionize science. AI is applicable in antimicrobial resistance (AMR) research, cancer research, drug design and vaccine development, epidemiology, disease surveillance, and genomics. Here, we highlighted and discussed the potential impact of various aspects of AI in veterinary clinical practice and biomedical research, proposing this technology as a key tool for addressing pressing global health challenges across various domains.

2.
Front Immunol ; 14: 1224102, 2023.
Article in English | MEDLINE | ID: mdl-37600803

ABSTRACT

There are overwhelming reports on the promotional effect of hypoxia on the malignant behavior of various forms of cancer cells. This has been proposed and tested exhaustively in the light of cancer immunotherapy. However, there could be more interesting functions of a hypoxic cellular micro-environment than malignancy. There is a highly intricate crosstalk between hypoxia inducible factor (HIF), a transcriptional factor produced during hypoxia, and nuclear factor kappa B (NF-κB) which has been well characterized in various immune cell types. This important crosstalk shares common activating and inhibitory stimuli, regulators, and molecular targets. Impaired hydroxylase activity contributes to the activation of HIFs. Inflammatory ligands activate NF-κB activity, which leads to the expression of inflammatory and anti-apoptotic genes. The eventual sequelae of the interaction between these two molecular players in immune cells, either bolstering or abrogating functions, is largely cell-type dependent. Importantly, this holds promise for interesting therapeutic interventions against several infectious diseases, as some HIF agonists have helped prevent immune-related diseases. Hypoxia and inflammation are common features of infectious diseases. Here, we highlighted the role of this crosstalk in the light of functional immunity against infection and inflammation, with special focus on various innate and adaptive immune cells. Particularly, we discussed the bidirectional effects of this crosstalk in the regulation of immune responses by monocytes/macrophages, dendritic cells, neutrophils, B cells, and T cells. We believe an advanced understanding of the interplay between HIFs and NF-kB could reveal novel therapeutic targets for various infectious diseases with limited treatment options.


Subject(s)
Communicable Diseases , NF-kappa B , Humans , Leukocytes , Immunotherapy , Hypoxia
3.
J Zoo Wildl Med ; 48(3): 918-921, 2017 09.
Article in English | MEDLINE | ID: mdl-28920778

ABSTRACT

The blood protozoan Trypanosoma evansi, which is transmitted by biting flies, is frequently neglected due to subclinical infections. This report describes a case of trypanosomiasis due to T. evansi in a 9-yr-old male puma (Felis concolor) housed at the Lahore Zoo in Pakistan. Early in January 2015, this male puma presented with chronic lethargy, weight loss, incoordination, hyperthermia, anorexia, sunken eyes, and unthriftiness. Microscopic examination of Giemsa-stained blood smears showed numerous Trypanosoma parasites. The puma was treated with diminazene aceturate subcutaneously twice. A few days later, a blood smear examination showed absence of trypanosomes. Five months later the cat presented with acute epistaxis and died. Postmortem examination showed emaciation, pale liver and kidneys, and hemorrhages on the spleen. Examination of a blood smear taken at the time of death showed numerous Trypanosoma parasites. PCR testing confirmed the presence of Trypanosoma DNA. DNA sequencing of two amplicons confirmed the presence of Trypanosoma in the blood smears with a 98-99% identity with the previously identified GenBank sequences. A phylogenetic tree was then constructed. Further studies are needed to improve our knowledge about the epidemiology and pathogenesis of T. evansi infection in wild animal species.


Subject(s)
Puma , Trypanosoma/classification , Trypanosomiasis/veterinary , Animals , Animals, Zoo , Antiprotozoal Agents/therapeutic use , Diminazene/analogs & derivatives , Diminazene/therapeutic use , Fatal Outcome , Male , Trypanosomiasis/drug therapy , Trypanosomiasis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...