Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10770, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402783

ABSTRACT

The current research presents a novel and sustainable load-bearing system utilizing cellular lightweight concrete block masonry walls. These blocks, known for their eco-friendly properties and increasing popularity in the construction industry, have been studied extensively for their physical and mechanical characteristics. However, this study aims to expand upon previous research by examining the seismic performance of these walls in a seismically active region, where cellular lightweight concrete block usage is emerging. The study includes the construction and testing of multiple masonry prisms, wallets, and full-scale walls using a quasi-static reverse cyclic loading protocol. The behavior of the walls is analyzed and compared in terms of various parameters such as force-deformation curve, energy dissipation, stiffness degradation, deformation ductility factor, response modification factor, and seismic performance levels, as well as rocking, in-plane sliding, and out-of-plane movement. The results indicate that the use of confining elements significantly improves the lateral load capacity, elastic stiffness, and displacement ductility factor of the confined masonry wall in comparison to an unreinforced masonry wall by 102%, 66.67%, and 5.3%, respectively. Overall, the study concludes that the inclusion of confining elements enhances the seismic performance of the confined masonry wall under lateral loading.

3.
Sci Rep ; 13(1): 8204, 2023 May 21.
Article in English | MEDLINE | ID: mdl-37211550

ABSTRACT

For a sustainable environment and to tackle the pollution problem, industrial wastes can be used in concrete composite materials. This is especially beneficial in places prone to earth quack and lower temperature. In this study, five different types of waste fibres such as polyester waste, rubber waste, rock wool waste, glass fibre waste and coconut fibre waste were used as an additive in 0.5% 1%, and 1.5% by mass in concrete mix. Seismic performance related properties of the samples were examined through evaluation of compressive strength, flexural strength, impact strength, split tensile strength, and thermal conductivity. Results showed that, impact strength of the concrete significantly improved by the addition of fibre reinforcement in concrete. Split tensile strength and flexural strength were significantly reduced. Thermal conductivity was also influenced by addition of polymeric fibrous waste. Microscopic analysis was performed to examine the fractured surfaces. In order to get the optimum mix ratio, multi response optimization technique was used to determine the desired level of impact strength at an acceptable level of other properties. Rubber waste was found to be the most attractive option followed by coconut fibre waste for the seismic application of concrete. The significance and percentage contribution of each factor was obtained by Analysis of variance ANOVA (α = 0.05) and pie chart which showed that Factor A (waste fibre type) is the main contributor. Confirmatory test was done on optimized waste material and their percentage. The order preference similarity to ideal solution (TOPSIS) technique was used for developed samples to obtain solution (sample) which is closest to ideal as per given weightage and preference for the decision making. The confirmatory test gives satisfactory results with error of 6.68%. Cost of reference sample and waste rubber reinforced concrete sample was estimated, which showed that 8% higher volume was achieved with waste fibre reinforced concrete at approximately same cost as pure concrete. Concrete reinforced with recycled fibre content is potentially beneficial in terms of minimizing resource depletion and waste. The addition of polymeric fibre waste in concrete composite not only improves seismic performance related properties but also reduces the environmental pollution from waste material which has no other end use.

4.
Materials (Basel) ; 15(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36363040

ABSTRACT

Beam-column connections are the most critical components of reinforced concrete (RC) structures. They serve as a load transfer path and take a significant portion of the overall shear. Joints in RC structures constructed with no seismic provisions have an insufficient capacity and ductility under lateral loading and can cause the progressive failure of the entire structure. The joint may fail in the shear prior to the connecting beam and column elements. Therefore, several modeling techniques have been devised in the past to capture the non-linear response of such joints. Modeling techniques used to capture the non-linear response of reinforced-concrete-beam-column joints range from simplified lumped plasticity models to detailed fiber-based finite element (FE) models. The macro-modeling technique for joint modeling is highly efficient in terms of the computational effort, analysis time, and computer memory requirements, and is one of the most widely used modeling techniques. The non-linear shear response of the joint panel and interface bond-slip mechanism are concentrated in zero-length linear and rotational springs while the connecting elements are modeled through elastic elements. The shear response of joint panels has also been captured through rigid panel boundary elements with rotational springs. The computational efficiency of these models is significantly high compared to continuum models, as each joint act as a separate supe-element. This paper aims to provide an up-to-date review of macro-modeling techniques for the analysis and assessment of RC-beam-column connections subjected to lateral loads. A thorough understanding of existing models is necessary for developing new mechanically adequate and computationally efficient joint models for the analysis and assessment of deficient RC connections. This paper will provide a basis for further research on the topic and will assist in the modification and optimization of existing models. As each model is critically evaluated, and their respective capabilities and limitations are explored, it should help researchers to improve and build on modeling techniques both in terms of accuracy and computational efficiency.

5.
Materials (Basel) ; 15(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591511

ABSTRACT

Cement and concrete are among the major contributors to CO2 emissions in modern society. Researchers have been investigating the possibility of replacing cement with industrial waste in concrete production to reduce its environmental impact. Therefore, the focus of this paper is on the effective use of wheat straw ash (WSA) together with silica fume (SF) as a cement substitute to produce high-performance and sustainable concrete. Different binary and ternary mixes containing WSA and SF were investigated for their mechanical and microstructural properties and global warming potential (GWP). The current results indicated that the binary and ternary mixes containing, respectively, 20% WSA (WSA20) and 33% WSA together with 7% SF (WSA33SF7) exhibited higher strengths than that of control mix and other binary and ternary mixes. The comparative lower apparent porosity and water absorption values of WSA20 and WSA33SF7 among all mixes also validated the findings of their higher strength results. Moreover, SEM-EDS and FTIR analyses has revealed the presence of dense and compact microstructure, which are mostly caused by formation of high-density calcium silicate hydrate (C-S-H) and calcium hydroxide (C-H) phases in both blends. FTIR and TGA analyses also revealed a reduction in the portlandite phase in these mixes, causing densification of microstructures and pores. Additionally, N2 adsorption isotherm analysis demonstrates that the pore structure of these mixes has been densified as evidenced by a reduction in intruded volume and a rise in BET surface area. Furthermore, both mixes had lower CO2-eq intensity per MPa as compared to control, which indicates their significant impact on producing green concretes through their reduced GWPs. Thus, this research shows that WSA alone or its blend with SF can be considered as a source of revenue for the concrete industry for developing high-performance and sustainable concretes.

6.
Sci Rep ; 12(1): 5719, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35387997

ABSTRACT

In this study, researchers examined the effect of replacing a high-volume of cement with sugarcane bagasse ash (BA) and silica fume (SF). In addition to the control, three binary and three ternary blends of concrete containing different percentages of cement/BA and cement/BA/SF were tested to determine the various mechanical and microstructural properties of concrete. For each mix, eighteen cylindrical concrete specimens were cast followed by standard curing (moist at 20 °C) to test the compressive and tensile strengths of three identical specimens at 7, 28, and 91 days. The test results indicated that the binary mix with 20% BA and ternary mix with 33% BA and 7% SF exhibited higher strengths than all the other mixes, including the control. The higher strengths of these mixes are also validated by their lower water absorption and apparent porosity than the other mixes. Following mechanical testing, the micro and pore structures of all mixes were investigated by performing scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and nitrogen (N2) adsorption isotherm analysis. In SEM-EDS analysis, a dense and compact microstructure was observed for the BA20 and BA33SF7 mixtures due to the formation of high-density C-S-H and C-H phases. The formation of a large amount of C-S-H phases was observed through FTIR, where a prominent shift in peaks from 955 to 970 cm-1 was observed in the spectra of these mixes. Moreover, in N2 adsorption isotherm analysis, a decrease in the intruded pore volume and an increase in the BET surface area of the paste matrix indicate the densification of the pore structure of these mixes. As observed through TGA, a reduction in the amount of the portlandite phase in these mixes leads to the formation of their more densified micro and pore structures. The current findings indicate that BA (20%) and its blend with SF (40%) represents a potential revenue stream for the development of sustainable and high-performance concretes in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...