Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Rep (Amst) ; 43: e00846, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39034969

ABSTRACT

The present study investigates S. cumini seed extracts which are considered as a promising and valuable source of bioactive compounds were prepared using different solvents such as methanol, ethanol, petroleum ether, acetone, chloroform, and diethyl ether. Among these solvents, methanol exhibited the highest extraction with a yield of 42 %. HPLC analysis revealed the highest concentration of quercetin flavonoids (49.62 mg/gm) in the methanolic S. cumini seed extract. Thus, the current work deals with the MgONPs synthesis through a biological approach using different S. cumini seed extracts. In vitro anti-oxidant properties were evaluated, which showed an IC50 value of 22.46 µg/mL for MgONPs synthesized from methanolic extract, surpassing the anti-oxidant potency of ascorbic acid by threefold. By leveraging the rich repository of bioactive compounds found within S. cumini seed extract, this study presents a novel approach to MgONPs synthesis. Exploring the symbiotic relationship between S. cumini seed extract and MgONPs, this research elucidates the pivotal role of bioactive compounds in guiding the formation and properties of nanostructures. Further anti-microbial studies on MgONPs from methanolic S. cumini seed extract were conducted against four different bacterial strains (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and S. typhimurium), revealing potent anti-microbial activity with 5.3 mm of inhibition for 100 µl against S. typhimurium. These findings suggest that S. cumini is a source of bioactive compounds responsible for the successful synthesis of MgONPs. Characterization studies of MgONPs were also carried out using UV-vis spectroscopy, FTIR, SEM, XRD, DSC and HPLC.

2.
Heliyon ; 10(3): e25064, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352738

ABSTRACT

Breast cancer remains a significant global health concern, necessitating the development of novel therapeutic approaches. In this study, we investigate the role of Eu3+ doped hydroxyapatite nanocomposites (Han: Eu3+) in the treatment of MCF7 and 4T1 breast cancer cell lines. Furthermore, we explored the structural and luminescent properties of these nanocomposites. Han: Eu3+ were synthesized using a modified co-precipitation method, and their morphology and crystal structure were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) in which the average crystalline size of Han: Eu3+ was found to be 25 nm, rendering them suitable for cellular uptake and targeted therapy. To gain insights into the luminescent properties of Han: Eu3+, their excitation and emission spectra were recorded using photoluminescence spectrometer. The characteristic red emission of Eu3+ ions was observed upon excitation, validating the successful doping of Eu3+ into the Han lattice, which was confirmed by the CIE chromaticity coordinate study. These luminescent properties of Han: Eu3+ hold promise for potential applications in bioimaging. To evaluate the efficacy of Han: Eu3+ in breast cancer treatment, MCF7 and 4T1 cell lines were exposed to varying concentrations of the nanocomposites. Cell viability assays revealed a concentration-dependent reduction in cell viability, indicating the potential anticancer activity of Han: Eu3+. The findings of this study contribute to the expanding field of nanomedicine, bringing targeted breast cancer treatments and us closer to more effective.

3.
J Food Sci ; 89(1): 320-329, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38051010

ABSTRACT

The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Stichopus/chemistry , Stichopus/metabolism , Pepsin A/metabolism , Sea Cucumbers/metabolism , Collagen/chemistry , Acids/chemistry
4.
Gels ; 9(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37102912

ABSTRACT

The current study aimed to determine the effects of extraction time on the extractability and physicochemical properties of collagen from the skin of silver catfish (Pangasius sp.). Pepsin soluble collagen (PSC) was extracted for 24 and 48 h and analysed in terms of chemical composition, solubility, functional group, microstructure, and rheological properties. The yields of PSC at 24 h and 48 h extraction time were 23.64% and 26.43%, respectively. The chemical composition exhibited significant differences, with PSC extracted at 24 h showing better moisture, protein, fat, and ash content. Both collagen extractions indicated the highest solubility at pH 5. In addition, both collagen extractions exhibited Amide A, I, II, and III as fingerprint regions for collagen structure. The morphology of the extracted collagen appeared porous with a fibril structure. The dynamic viscoelastic measurements of complex viscosity (η*) and loss tangent (tan δ) decreased as temperature increased, and the viscosity increased exponentially as the frequency increased, whereas the loss tangent decreased. In conclusion, PSC extracted at 24 h showed similar extractability to that extracted at 48 h but with a better chemical composition and shorter extraction time. Therefore, 24 h is the best extraction time for PSC from silver catfish skin.

5.
Foods ; 11(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36496605

ABSTRACT

The color indicator can monitor the quality and safety of food products due to its sensitive nature toward various pH levels. A color indicator helps consumers monitor the freshness of food products since it is difficult for them to depend solely on their appearance. Thus, this review could provide alternative suggestions to solve the food-spoilage determination, especially for perishable food. Usually, food spoilage happens due to protein and lipid oxidation, enzymatic reaction, and microbial activity that will cause an alteration of the pH level. Due to their broad-spectrum properties, natural sources such as anthocyanin, curcumin, and betacyanin are commonly used in developing color indicators. They can also improve the gelatin-based film's morphology and significant drawbacks. Incorporating natural colorants into the gelatin-based film can improve the film's strength, gas-barrier properties, and water-vapor permeability and provide antioxidant and antimicrobial properties. Hence, the color indicator can be utilized as an effective tool to monitor and control the shelf life of packaged foods. Nevertheless, future studies should consider the determination of food-spoilage observation using natural colorants from betacyanin, chlorophyll, and carotenoids, as well as the determination of gas levels in food spoilage, especially carbon dioxide gas.

6.
J Food Sci Technol ; 58(12): 4567-4577, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34629521

ABSTRACT

Hypertension is a threatening chronic disease, which become a global killer among the adult population. The mortality rate increasing day by day even several Angiotensin I-converting enzyme (ACE) inhibitor drugs were introduced. Bioactive peptides derived from aquatic resources exhibits potential ACE inhibitory activity. The objective of this work is to report the purification and molecular docking studies of angiotensin-I converting enzyme (ACE) inhibitory peptide isolated from shortfin scad (Decapterus macrosoma) waste protein hydrolysate (SWH), enzymatically prepared by using alcalase. The purification process included ultrafiltration, gel filtration and reverse phase high performance liquid chromatography (RP-HPLC). Results showed that ultra-filtered peptide fraction (< 3 kDa) possessed the highest ACE inhibitory activity, followed by the fraction 14 by gel filtration. Fraction P obtained by RP-HPLC, with the amino acid sequence of RGVGPVPAA (IC50 = 0.20 mg/ml) was identified. In terms of ACE inhibition, the Lineweaver-Burk plot showed that the SWH peptide obtained acted as a competitive ACE inhibitor. The molecular docking studies showed that the SWH peptide exhibit hydrogen bonds and Pi-interactions with ACE by Z-dock scores. These results showed that the purified peptide isolated from shortfin scad waste hydrolysate has potential antihypertensive properties which could potentially be used as functional food ingredients.

SELECTION OF CITATIONS
SEARCH DETAIL
...