Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioorg Chem ; 141: 106876, 2023 12.
Article in English | MEDLINE | ID: mdl-37797458

ABSTRACT

Antimicrobial peptides (AMPs) often display guanidinium functionalities, and hence robust synthetic procedures are needed to facilitate access to analogues with unnatural homologues of arginine (Arg = R). Initially, a resin-bound Arg/Pro-rich fluoren-9-yl-methyloxycarbonyl-protected fragment (Fmoc-RPRPPR) of the AMP oncocin (i.e., VDKPPYLPRPRPPRRIYNR-NH2) was employed in a comparative on-resin assessment of commercial guanidinylation reagents head-to-head with the recently studied bis-Boc-protected triazole-based reagent, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]-carboxamidine, which was synthesized by a chromatography-free procedure. This reagent was found to enable quantitative conversion in solid-phase peptide synthesis (SPPS) of peptides displaying homoarginine (Har) residues and/or an N-terminal guanidinium group. SPPS was used to obtain analogues of the 18-mer oncocin with single as well as multiple Arg → Har modifications. In addition, the effect of replacement of proline (Pro) residues in oncocin was explored by incorporating single or multiple trans-4-hydroxy-l-proline (Hyp) or 4,4-difluoro-l-proline (Dfp) residues, which both affected hydrophobicity. The resulting peptide library was tested against both Gram-negative and Gram-positive bacteria. Analysis of the minimal inhibitory concentrations (MICs) showed that analogues, displaying modifications at positions 4, 5 and 12 (originally Pro residues), had retained or slightly improved antimicrobial activity. Next, an oncocin analogue with two stabilizing l-Arg → d-Arg replacements in the C-terminal part was further modified by triple-replacement of Pro by either Dfp or Hyp in positions 4, 5, and 12. The resulting analogue displaying three Pro → Dfp modifications proved to possess the best activity profile: MICs of 1-2 µg/mL against E. coli and Klebsiella pneumoniae, less than 1% hemolysis at 800 µg/mL, and an IC50 above 1280 µg/mL in HepG2 cells. Thus, incorporation of bis-fluorinated Pro residues appears to constitute a novel tool in structure-activity studies aimed at optimization of Pro-rich AMPs.


Subject(s)
Escherichia coli , Homoarginine , Hydroxyproline/pharmacology , Homoarginine/pharmacology , Guanidine/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , Triazoles/pharmacology
2.
Molecules ; 26(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34834099

ABSTRACT

Alterations in the polyamine and amino acid (tyrosine) moieties of philanthotoxin-343 (PhTX-343) were investigated for their effects on the antagonism of nicotinic acetylcholine receptors (nAChRs) isolated from the locust (Schistocerca gregaria) mushroom body. Through whole-cell patch-clamp recordings, the philanthotoxin analogues in this study were shown to cause inhibition of the inward current when co-applied with acetylcholine (ACh). PhTX-343 (IC50 = 0.80 µM at -75 mV) antagonised locust nAChRs in a use-dependent manner, suggesting that it acts as an open-channel blocker. The analogue in which both the secondary amine functionalities were replaced with methylene groups (i.e., PhTX-12) was ~6-fold more potent (IC50 (half-maximal inhibitory concentration) = 0.13 µM at -75 mV) than PhTX-343. The analogue containing cyclohexylalanine as a substitute for the tyrosine moiety of PhTX-343 (i.e., Cha-PhTX-343) was also more potent (IC50 = 0.44 µM at -75 mV). A combination of both alterations to PhTX-343 generated the most potent analogue, i.e., Cha-PhTX-12 (IC50 = 1.71 nM at -75 mV). Modulation by PhTX-343 and Cha-PhTX-343 fell into two distinct groups, indicating the presence of two pharmacologically distinct nAChR groups in the locust mushroom body. In the first group, all concentrations of PhTX-343 and Cha-PhTX-343 inhibited responses to ACh. In the second group, application of PhTX-343 or Cha-PhTX-343 at concentrations ≤100 nM caused potentiation, while concentrations ≥ 1 µM inhibited responses to ACh. Cha-PhTX-12 may have potential to be developed into insecticidal compounds with a novel mode of action.


Subject(s)
Grasshoppers/chemistry , Insect Proteins/chemistry , Nicotinic Antagonists/chemistry , Phenols/chemistry , Polyamines/chemistry , Receptors, Nicotinic/chemistry , Tyrosine/analogs & derivatives , Acetylcholine/chemistry , Acetylcholine/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Grasshoppers/metabolism , Insect Proteins/antagonists & inhibitors , Insect Proteins/metabolism , Nicotinic Antagonists/pharmacology , Phenols/pharmacology , Polyamines/pharmacology , Protein Conformation , Receptors, Nicotinic/metabolism , Tyrosine/chemistry , Tyrosine/pharmacology
3.
J Org Chem ; 84(3): 1276-1287, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30608165

ABSTRACT

A robust synthetic route has been developed for preparing optically pure, Fmoc-protected diethylene glycol-containing ( R)- and ( S)-γPNA monomers. The strategy involves the application of 9-(4-bromophenyl)-9-fluorenyl as a temporary, safety-catch protecting group for the suppression of epimerization in the O-alkylation and reductive amination steps. The optical purities of the final monomers were determined to be greater than 99.5% ee, as assessed by 19F-NMR and HPLC. The new synthetic methodology is well-suited for large-scale monomer production, with most synthetic steps providing excellent chemical yields without the need for chromatographic purification other than a simple workup and precipitation.


Subject(s)
Ethylene Glycols/chemical synthesis , Macromolecular Substances/chemical synthesis , Peptides/chemistry , Chromatography, High Pressure Liquid
4.
Biochemistry ; 57(14): 2094-2108, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29562132

ABSTRACT

We report the development of a new class of nucleic acid ligands that is comprised of Janus bases and the MPγPNA backbone and is capable of binding rCAG repeats in a sequence-specific and selective manner via, inference, bivalent H-bonding interactions. Individually, the interactions between ligands and RNA are weak and transient. However, upon the installation of a C-terminal thioester and an N-terminal cystine and the reduction of disulfide bond, they undergo template-directed native chemical ligation to form concatenated oligomeric products that bind tightly to the RNA template. In the absence of an RNA target, they self-deactivate by undergoing an intramolecular reaction to form cyclic products, rendering them inactive for further binding. The work has implications for the design of ultrashort nucleic acid ligands for targeting rCAG-repeat expansion associated with Huntington's disease and a number of other related neuromuscular and neurodegenerative disorders.


Subject(s)
Huntington Disease , RNA/chemistry , Trinucleotide Repeat Expansion , Humans , Ligands , RNA/genetics
5.
Biomacromolecules ; 15(10): 3679-86, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25122513

ABSTRACT

Glycopolypeptides with a defined secondary structure are of significance in understanding biological phenomena. Synthetic glycopolypeptides, or polypeptides featuring pendant carbohydrate moieties, have been of particular interest in the field of tissue engineering and drug delivery. In this work, we have synthesized charged water-soluble glycopolypeptides that adopt a helical conformation in water. This was carried out by the synthesis of a glyco-N-carboxyanhydride (glyco-NCA) containing an azide group at the sixth position of the carbohydrate ring. Subsequently, the NCA was polymerized to obtain azide-containing glycopolypeptides having good control over molecular weight and polydispersity index (PDI) in high yields. We were also able to control the incorporation of the azide group by synthesizing random co-glycopolypeptide containing 6-deoxy-6-azido and regular 6-OAc functionalized glucose. This azide functionality allows for the easy attachment of a bioactive group, which could potentially enhance the biological activity of the glycopolypeptide. We were able to obtain water-soluble charged glycopolypeptides by both reducing the azide groups into amines and using CuAAC with propargylamine. These charged glycopolypeptides were shown to have a helical conformation in water. Preliminary studies showed that these charged glycopolypeptides showed good biocompatibility and were efficiently taken up by HepG2 cells.


Subject(s)
Azides/chemistry , Cations/chemistry , Glycopeptides/chemistry , Glycopeptides/chemical synthesis , Amines/chemistry , Azides/administration & dosage , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Cations/administration & dosage , Cell Line, Tumor , Glucose/chemistry , Glycopeptides/administration & dosage , Hep G2 Cells , Humans , Molecular Conformation , Molecular Weight , Polymerization , Polymers/chemistry , Water/chemistry
6.
Langmuir ; 29(19): 5659-67, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23578300

ABSTRACT

The synthesis of the amphiphilic homoglycopolypeptide was carried out by a combination of NCA polymerization and click chemistry to yield a well-defined polypeptide having an amphiphilic carbohydrate on its side chain. The amphiphilicity of the carbohydrate was achieved by incorporation of an alkyl chain at the C-6 position of the carbohydrate thus also rendering the homoglycopolypeptide amphiphilic. The homoglycopolypeptide formed multimicellar aggregates in water above a critical concentration of 0.9 µM due to phase separation. The multimicellar aggregates were characterized by DLS, TEM, and AFM. It is proposed that hydrophobic interactions of the aliphatic chains at the 6-position of the sugar moieties drives the assembly of these rod-like homoglycopolypeptide into large spherical aggregates. These multimicellar aggregates encapsulate both hydrophilic as well as hydrophobic dye as was confirmed by confocal microscopy. Finally, amphiphilic random polypeptides containing 10% and 20% α-d-mannose in addition to glucose containing a hydrophobic alkyl chain at its 6 position were synthesized by our methodology, and these polymers were also found to assemble into spherical nanostructures. The spherical assemblies of amphiphilic random glycopolypeptides containing 10% and 20% mannose were found to be surface bioactive and were found to interact with the lectin Con-A.


Subject(s)
Glycopeptides/chemical synthesis , Polymers/chemical synthesis , Surface-Active Agents/chemical synthesis , Glycopeptides/chemistry , Molecular Structure , Particle Size , Polymers/chemistry , Surface Properties , Surface-Active Agents/chemistry
7.
Biomacromolecules ; 13(5): 1287-95, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22497456

ABSTRACT

The facile synthesis of high molecular weight water-soluble O-glycopolypeptide polymers by the ring-opening polymerization of their corresponding N-carboxyanhydride (NCA) in very high yield (overall yield > 70%) is reported. The per-acetylated-O-glycosylated lysine-NCA monomers, synthesized using stable glycosyl donors and a commercially available protected amino acid in very high yield, was polymerized using commercially available amine initiators. The synthesized water-soluble glycopolypeptides were found to be α-helical in aqueous solution. However, we were able to control the secondary conformation of the glycopolypeptides (α-helix vs nonhelical structures) by polymerizing racemic amino acid glyco NCAs. We have also investigated the binding of the glycopolypeptide poly(α-manno-O-lys) with the lectin Con-A using precipitation and hemagglutination assays as well as by isothermal titration calorimetry (ITC). The ITC results clearly show that the binding process is enthalpy driven for both α-helical and nonhelical structures, with negative entropic contribution. Binding stoichiometry for the glycopolypeptide poly(α-manno-O-lys) having a nonhelical structure was slightly higher as compared to the corresponding polypeptide which adopted an α-helical structure.


Subject(s)
Glycopeptides/chemical synthesis , Lectins/chemistry , Polymers/chemical synthesis , Anhydrides/chemistry , Glycopeptides/chemistry , Molecular Structure , Polymerization , Polymers/chemistry
8.
Org Biomol Chem ; 9(17): 5951-9, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21483986

ABSTRACT

Propargyl 1,2-O-orthoesters are exploited for the synthesis of 1,2-trans O-glycosides of protected amino acids. N-Fmoc- and N-Cbz protected serine/threonine - benzyl/methyl esters reacted well with glucosyl-, galactosyl-, mannosyl- and lactosyl- derived propargyl 1,2-orthoesters affording respective 1,2-trans glycosides in good yields under AuBr(3)/4 Å MS Powder/CH(2)Cl(2)/rt. t-Boc serine derivative gave serine 1,2-orthoester and glycosyl carbamate. Optimized conditions enabled preparation of new glycosyl carbamates from N-Boc protected amines in a single step using gold catalysts and propargyl 1,2-orthoesters in excellent yields.


Subject(s)
Amino Acids/chemical synthesis , Carbamates/chemical synthesis , Glycosides/chemical synthesis , Amino Acids/chemistry , Carbamates/chemistry , Esters/chemical synthesis , Esters/chemistry , Glycosides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...