Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Direct ; 8(5): e594, 2024 May.
Article in English | MEDLINE | ID: mdl-38799417

ABSTRACT

The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.

2.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37816307

ABSTRACT

Several species of sacoglossan sea slugs possess the incredible ability to sequester chloroplasts from the algae they consume. These "photosynthetic animals" incorporate stolen chloroplasts, called kleptoplasts, into the epithelial cells of tubules that extend from their digestive tracts throughout their bodies. The mechanism by which these slugs maintain functioning kleptoplasts in the absence of an algal nuclear genome is unknown. Here, we report a draft genome of the sacoglossan slug Elysia crispata morphotype clarki, a morphotype native to the Florida Keys that can retain photosynthetically active kleptoplasts for several months without feeding. We used a combination of Oxford Nanopore Technologies long reads and Illumina short reads to produce a 786-Mb assembly (N50 = 0.459 Mb) containing 68,514 predicted protein-coding genes. A phylogenetic analysis found no evidence of horizontal acquisition of genes from algae. We performed gene family and gene expression analyses to identify E. crispata genes unique to kleptoplast-containing slugs that were more highly expressed in fed versus unfed developmental life stages. Consistent with analyses in other kleptoplastic slugs, our investigation suggests that genes encoding lectin carbohydrate-binding proteins and those involved in regulation of reactive oxygen species and immunity may play a role in kleptoplast retention. Lastly, we identified four polyketide synthase genes that could potentially encode proteins producing UV- and oxidation-blocking compounds in slug cell membranes. The genome of E. crispata is a quality resource that provides potential targets for functional analyses and enables further investigation into the evolution and mechanisms of kleptoplasty in animals.


Subject(s)
Gastropoda , Photosynthesis , Animals , Phylogeny , Chloroplasts/metabolism , Gastropoda/genetics , Genome
3.
J Exp Bot ; 73(3): 848-859, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34687198

ABSTRACT

Phloem loading and transport are fundamental processes for allocating carbon from source organs to sink tissues. Cotton (Gossypium spp.) has a high sink demand for the cellulosic fibers that grow on the seed coat and for the storage reserves in the developing embryo, along with the demands of new growth in the shoots and roots. Addressing how cotton mobilizes resources from source leaves to sink organs provides insight into processes contributing to fiber and seed yield. Plasmodesmata frequencies between companion cells and flanking parenchyma in minor veins are higher than expected for an apoplastic loader, and cotton's close relatedness to Tilia spp. hints at passive loading. Suc was the only canonical transport sugar in leaves and constituted 87% of 14C-labeled photoassimilate being actively transported. [14C]Suc uptake coupled with autoradiography indicated active [14C]Suc accumulation in minor veins, suggesting Suc loading from the apoplast; esculin, a fluorescent Suc analog, did not accumulate in minor veins. Of the nine sucrose transporter (SUT) genes identified per diploid genome, only GhSUT1-L2 showed appreciable expression in mature leaves, and silencing GhSUT1-L2 yielded phenotypes characteristic of blocked phloem transport. Furthermore, only GhSUT1-L2 cDNA stimulated esculin and [14C]Suc uptake into yeast, and only the GhSUT1-L2 promoter caused uidA (ß-glucuronidase) reporter gene expression in minor vein phloem of Arabidopsis thaliana. Collectively, these results argue that apoplastic phloem loading mediated by GhSUT1-L2 is the dominant mode of phloem loading in cotton.


Subject(s)
Arabidopsis , Phloem , Arabidopsis/genetics , Biological Transport , Gossypium/genetics , Gossypium/metabolism , Phloem/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plasmodesmata/metabolism , Sucrose/metabolism
4.
Methods Mol Biol ; 2014: 223-233, 2019.
Article in English | MEDLINE | ID: mdl-31197800

ABSTRACT

Phloem loading and long-distance transport of photoassimilate from source leaves to sink organs are essential physiological processes that contribute to plant growth and yield. At a minimum, three steps are involved: phloem loading in source organs, transport along the phloem path, and phloem unloading in sink organs. Each of these can have variable rates contingent on the physiological state of the plant, and thereby influence the overall transport rate. In addition to these phloem transport steps, rates of photosynthesis and photosynthate movement in the pre-phloem path, as well as photosynthate utilization in post phloem tissues of sink organs also contribute to phloem transport. The protocol described here estimates carbon allocation along the entire path from initial carbon fixation to delivery to sink organs after a labeling pulse: [14C]CO2 is photoassimilated in source leaves and loading and transport of the 14C label to heterotrophic sink organs (roots) is quantified by scintillation counting. This method is flexible and can be adapted to quantify long-distance transport in many plant species.


Subject(s)
Carbon Dioxide/metabolism , Carbon/metabolism , Heterotrophic Processes , Phloem/metabolism , Photosynthesis , Plant Leaves/metabolism , Biological Transport , Organ Specificity , Sugars/metabolism
5.
Bio Protoc ; 7(24): e2656, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-34595316

ABSTRACT

Phloem loading and transport of photoassimilate from photoautotrophic source leaves to heterotrophic sink organs are essential physiological processes that help the disparate organs of a plant function as a single, unified organism. We present three protocols we routinely use in combination with each other to assess (1) the relative rates of sucrose (Suc) loading into the phloem vascular system of mature leaves ( Yadav et al., 2017a ), (2) the relative rates of carbon loading and transport through the phloem (this protocol), and (3) the relative rates of carbon unloading into heterotrophic sink organs, specifically roots, after long-distance transport ( Yadav et al., 2017b ), We propose that conducting all three protocols on experimental and control plants provides a reliable comparison of whole-plant carbon partitioning, and minimizes ambiguities associated with a single protocol conducted in isolation ( Dasgupta et al., 2014 ; Khadilkar et al., 2016 ). In this protocol, [14C]CO2 is photoassimilated in source leaves and phloem loading and transport of photoassimilate is quantified by collecting phloem exudates into an EDTA solution followed by scintillation counting.

6.
Bio Protoc ; 7(24): e2657, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-34595317

ABSTRACT

Phloem loading and transport of photoassimilate from photoautotrophic source leaves to heterotrophic sink organs are essential physiological processes that help the disparate organs of a plant function as a single, unified organism. We present three protocols we routinely use in combination with each other to assess (1) the relative rates of sucrose (Suc) loading into the phloem vascular system of mature leaves ( Yadav et al., 2017a ), (2) the relative rates of carbon loading and transport through the phloem ( Yadav et al., 2017b ), and (3) the relative rates of carbon unloading into heterotrophic sink organs, specifically roots, after long-distance transport (this protocol). We propose that conducting all three protocols on experimental and control plants provides a reliable comparison of whole-plant carbon partitioning, and minimizes ambiguities associated with a single protocol conducted in isolation ( Dasgupta et al., 2014 ; Khadilkar et al., 2016 ). In this protocol, [14C]CO2 is photoassimilated in source leaves and phloem loading and transport of the 14C label to heterotrophic sink organs, particularly roots, is quantified by scintillation counting. Using this protocol, we demonstrated that overexpression of sucrose transporters and a vacuolar proton pumping pyrophosphatase in the companion cells of Arabidopsis enhanced transport of 14C label photoassimilates to sink organs ( Dasgupta et al., 2014 ; Khadilkar et al., 2016 ). This method can be adapted to quantify long-distance transport in other plant species.

7.
Bio Protoc ; 7(24): e2658, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-34595318

ABSTRACT

Phloem loading and transport of photoassimilate from photoautotrophic source leaves to heterotrophic sink organs are essential physiological processes that help the disparate organs of a plant function as a single, unified organism. We present three protocols we routinely use in combination with each other to assess (1) the relative rates of sucrose (Suc) loading into the phloem vascular system of mature leaves (this protocol), (2) the relative rates of carbon loading and transport through the phloem ( Yadav et al., 2017a ), and (3) the relative rates of carbon unloading into heterotrophic sink organs, specifically roots, after long-distance transport ( Yadav et al., 2017b ). We propose that conducting all three protocols on experimental and control plants provides a reliable comparison of whole-plant carbon partitioning, and minimizes ambiguities associated with a single protocol conducted in isolation ( Dasgupta et al., 2014 ; Khadilkar et al., 2016 ). In this protocol, Arabidopsis leaf disks isolated from mature rosette leaves are infiltrated with a buffered solution containing [14C]Suc. Suc transporters (SUCs or SUTs) load Suc into the phloem and excess, unloaded Suc in the leaf disk is then washed away. Loading of labeled Suc into the veins is visualized by autoradiography of lyophilized leaf disks and quantified by scintillation counting. Results are expressed as disintegration per minute per unit of leaf disk fresh weight or area.

SELECTION OF CITATIONS
SEARCH DETAIL
...