Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Surg ; 99(9): 1246-53, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22864885

ABSTRACT

BACKGROUND: Natural orifice transluminal endoscopic surgery (NOTES) is technically challenging owing to endoscopic short-sighted visualization, excessive scope flexibility and lack of adequate instrumentation. Augmented reality may overcome these difficulties. This study tested whether an image registration system for NOTES procedures (IR-NOTES) can facilitate navigation. METHODS: In three human cadavers 15 intra-abdominal organs were targeted endoscopically with and without IR-NOTES via both transgastric and transcolonic routes, by three endoscopists with different levels of expertise. Ease of navigation was evaluated objectively by kinematic analysis, and navigation complexity was determined by creating an organ access complexity score based on the same data. RESULTS: Without IR-NOTES, 21 (11·7 per cent) of 180 targets were not reached (expert endoscopist 3, advanced 7, intermediate 11), compared with one (1 per cent) of 90 with IR-NOTES (intermediate endoscopist) (P = 0·002). Endoscope movements were significantly less complex in eight of the 15 listed organs when using IR-NOTES. The most complex areas to access were the pelvis and left upper quadrant, independently of the access route. The most difficult organs to access were the spleen (5 failed attempts; 3 of 7 kinematic variables significantly improved) and rectum (4 failed attempts; 5 of 7 kinematic variables significantly improved). The time needed to access the rectum through a transgastric approach was 206·3 s without and 54·9 s with IR-NOTES (P = 0·027). CONCLUSION: The IR-NOTES system enhanced both navigation efficacy and ease of intra-abdominal NOTES exploration for operators of all levels. The system rendered some organs accessible to non-expert operators, thereby reducing one impediment to NOTES procedures.


Subject(s)
Computer Systems , Natural Orifice Endoscopic Surgery/methods , Tomography, X-Ray Computed/methods , Abdominal Wall/anatomy & histology , Adult , Cadaver , Computer Simulation , Digestive System/anatomy & histology , Female , Humans , Male , Natural Orifice Endoscopic Surgery/standards , Pelvic Floor/anatomy & histology , Tomography, X-Ray Computed/standards
2.
Biochem Pharmacol ; 58(8): 1361-70, 1999 Oct 15.
Article in English | MEDLINE | ID: mdl-10487540

ABSTRACT

The kidney plays an important role in the homeostasis of carnitine by its ability to reabsorb carnitine almost completely from the glomerular filtrate. The transport process responsible for this reabsorption has been investigated thus far only in laboratory animals. Here we report on the characteristics of carnitine uptake in a proximal tubular epithelial cell line derived from human kidney. The uptake process was found to be obligatorily dependent on Na+ with no involvement of anions. The process was saturable, with a Michaelis-Menten constant of 14 +/- 1 microM. The Na+:carnitine stoichiometry was 1:1. The same process also was found to be responsible for the uptake of acetylcarnitine and propionylcarnitine, two acyl esters of carnitine with potential for therapeutic use in humans. The uptake process was specific for carnitine and its acyl esters. Betaine, a structural analog of carnitine, interacted with the uptake process to a significant extent. The present studies also showed that sulfonylureas, oral hypoglycemic agents currently used in the management of type 2 diabetes, inhibited the carnitine uptake system. Among the sulfonylureas tested, glibenclamide was the most potent inhibitor. The inhibition was competitive. Glibenclamide inhibited the uptake not only of carnitine but also of acetylcarnitine and propionylcarnitine. The inhibition most likely was the result of direct interaction of the compound with the carnitine transporter because the inhibition could be demonstrated in purified rat kidney brush border membrane vesicles.


Subject(s)
Carnitine/metabolism , Kidney Tubules, Proximal/drug effects , Sulfonylurea Compounds/pharmacology , Administration, Oral , Animals , Biological Transport/drug effects , Carnitine/analogs & derivatives , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Hypoglycemic Agents/pharmacology , Kidney Tubules, Proximal/metabolism , Microvilli/drug effects , Microvilli/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...