Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(7): e0234875, 2020.
Article in English | MEDLINE | ID: mdl-32645069

ABSTRACT

It is widely believed that one's peers influence product adoption behaviors. This relationship has been linked to the number of signals a decision-maker receives in a social network. But it is unclear if these same principles hold when the "pattern" by which it receives these signals vary and when peer influence is directed towards choices which are not optimal. To investigate that, we manipulate social signal exposure in an online controlled experiment using a game with human participants. Each participant in the game decides among choices with differing utilities. We observe the following: (1) even in the presence of monetary risks and previously acquired knowledge of the choices, decision-makers tend to deviate from the obvious optimal decision when their peers make a similar decision which we call the influence decision, (2) when the quantity of social signals vary over time, the forwarding probability of the influence decision and therefore being responsive to social influence does not necessarily correlate proportionally to the absolute quantity of signals. To better understand how these rules of peer influence could be used in modeling applications of real world diffusion and in networked environments, we use our behavioral findings to simulate spreading dynamics in real world case studies. We specifically try to see how cumulative influence plays out in the presence of user uncertainty and measure its outcome on rumor diffusion, which we model as an example of sub-optimal choice diffusion. Together, our simulation results indicate that sequential peer effects from the influence decision overcomes individual uncertainty to guide faster rumor diffusion over time. However, when the rate of diffusion is slow in the beginning, user uncertainty can have a substantial role compared to peer influence in deciding the adoption trajectory of a piece of questionable information.


Subject(s)
Decision Making/physiology , Peer Influence , Adult , Choice Behavior/physiology , Computer Simulation , Female , Humans , Male , Peer Group , Probability , Uncertainty , Video Games
2.
PLoS One ; 9(4): e90303, 2014.
Article in English | MEDLINE | ID: mdl-24694693

ABSTRACT

In this paper, we present algorithms to find near-optimal sets of epidemic spreaders in complex networks. We extend the notion of local-centrality, a centrality measure previously shown to correspond with a node's ability to spread an epidemic, to sets of nodes by introducing combinatorial local centrality. Though we prove that finding a set of nodes that maximizes this new measure is NP-hard, good approximations are available. We show that a strictly greedy approach obtains the best approximation ratio unless P = NP and then formulate a modified version of this approach that leverages qualities of the network to achieve a faster runtime while maintaining this theoretical guarantee. We perform an experimental evaluation on samples from several different network structures which demonstrate that our algorithm maximizes combinatorial local centrality and consistently chooses the most effective set of nodes to spread infection under the SIR model, relative to selecting the top nodes using many common centrality measures. We also demonstrate that the optimized algorithm we develop scales effectively.


Subject(s)
Algorithms , Epidemics , Models, Biological , Humans
3.
Biosystems ; 111(2): 136-44, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23353025

ABSTRACT

Evolutionary graph theory studies the evolutionary dynamics of populations structured on graphs. A central problem is determining the probability that a small number of mutants overtake a population. Currently, Monte Carlo simulations are used for estimating such fixation probabilities on general directed graphs, since no good analytical methods exist. In this paper, we introduce a novel deterministic framework for computing fixation probabilities for strongly connected, directed, weighted evolutionary graphs under neutral drift. We show how this framework can also be used to calculate the expected number of mutants at a given time step (even if we relax the assumption that the graph is strongly connected), how it can extend to other related models (e.g. voter model), how our framework can provide non-trivial bounds for fixation probability in the case of an advantageous mutant, and how it can be used to find a non-trivial lower bound on the mean time to fixation. We provide various experimental results determining fixation probabilities and expected number of mutants on different graphs. Among these, we show that our method consistently outperforms Monte Carlo simulations in speed by several orders of magnitude. Finally we show how our approach can provide insight into synaptic competition in neurology.


Subject(s)
Algorithms , Evolution, Molecular , Models, Genetic , Models, Statistical , Numerical Analysis, Computer-Assisted , Computer Simulation , Humans
4.
PLoS One ; 7(9): e45154, 2012.
Article in English | MEDLINE | ID: mdl-23049774

ABSTRACT

We study the behavior of pathogens on host protein networks for humans and Arabidopsis - noting striking similarities. Specifically, we preform [Formula: see text]-shell decomposition analysis on these networks - which groups the proteins into various "shells" based on network structure. We observe that shells with a higher average degree are more highly targeted (with a power-law relationship) and that highly targeted nodes lie in shells closer to the inner-core of the network. Additionally, we also note that the inner core of the network is significantly under-targeted. We show that these core proteins may have a role in intra-cellular communication and hypothesize that they are less attacked to ensure survival of the host. This may explain why certain high-degree proteins are not significantly attacked.


Subject(s)
Algorithms , Arabidopsis/virology , Protein Interaction Maps , Proteins/metabolism , Viruses/metabolism , Arabidopsis/microbiology , Bacteria/growth & development , Bacteria/metabolism , Host-Pathogen Interactions , Humans , Protein Interaction Mapping , Viruses/growth & development
5.
Biosystems ; 107(2): 66-80, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22020107

ABSTRACT

Evolutionary graph theory (EGT), studies the ability of a mutant gene to overtake a finite structured population. In this review, we describe the original framework for EGT and the major work that has followed it. This review looks at the calculation of the "fixation probability" - the probability of a mutant taking over a population and focuses on game-theoretic applications. We look at varying topics such as alternate evolutionary dynamics, time to fixation, special topological cases, and game theoretic results. Throughout the review, we examine several interesting open problems that warrant further research.


Subject(s)
Biological Evolution , Game Theory , Models, Genetic , Genetic Drift , Mutation , Population Dynamics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...