Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Sci ; 29(6): 1730-1737, 2022 06.
Article in English | MEDLINE | ID: mdl-34254278

ABSTRACT

Embryo implantation requires appropriate communication between the blastocyst and endometrium. Recurrent implantation failure is an essential component of assisted reproductive technology. Also, miRNA-mediated gene expression impacts the implantation process, and the downregulation of some miRs, such as mmu-let-7a, improves this process. In the present study, we evaluated the effect of let-7a forced suppression on the mouse implantation rate. In total, 100 adult female mice and 10 adult male mice were included (Strain CD-1). We analysed the expression of let-7a and its potential mRNAs targets (Igf1, Il1a, Itgb3 and Tgfb1) in control, sham and antagomir-treated blastocysts using quantitative reverse transcription PCR (qRT-PCR). The control and treated blastocysts were transferred to the 20 pseudopregnant mice so that the effect of let-7a suppression on the rate of implantation could be determined. The expression level of let-7a in the treatment group was significantly downregulated (P=0.001) In contrast, no significant expression changes were observed for let-7a or mRNAs targets when the sham and control groups were compared (P>0.05). In comparison to the controls, the antagomir-treated group exhibited significantly upregulated expression levels of Igf1 (0.0167), Itgb3 (0.045) and Tgfb1 (0.0115). Additionally, the implantation rate was significantly higher in the treatment group (78%) than the control group (61%) (P=0.0098). We found that forced suppression of mmu-let-7a-5p through successful transfection of Anti-miR leads to upregulation of downstream genes, Igf1, Itgb3 and Tgfb1, which directly involved in the trophoblast-endometrium attachment and improve the implantation rate.


Subject(s)
Embryo Implantation , MicroRNAs , Animals , Antagomirs/metabolism , Blastocyst/metabolism , Embryo Implantation/physiology , Endometrium/metabolism , Female , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...