Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Cell Biol ; 25(11): 1564-1565, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945827
2.
Curr Biol ; 33(14): 3048-3055.e6, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37453427

ABSTRACT

Fertilization is a fundamental process in sexual reproduction during which gametes fuse to combine their genetic material and start the next generation in their life cycle. Fertilization involves species-specific recognition, adhesion, and fusion between the gametes.1,2 In mammals and other model species, some proteins are known to be required for gamete interactions and have been validated with loss-of-function fertility phenotypes.3,4 Yet, the molecular basis of sperm-egg interaction is not well understood. In a forward genetic screen for fertility mutants in Caenorhabditis elegans, we identified spe-51. Mutant worms make sperm that are unable to fertilize the oocyte but otherwise normal by all available measurements. The spe-51 gene encodes a secreted protein that includes an immunoglobulin (Ig)-like domain and a hydrophobic sequence of amino acids. The SPE-51 protein acts cell autonomously and localizes to the surface of the spermatozoa. We further show that the gene product of the mammalian sperm function gene Sof1 is likewise secreted. This is the first example of a secreted protein required for the interactions between the sperm and egg with genetic validation for a specific function in fertilization in C. elegans (also see spe-365). This is also the first experimental evidence that mammalian SOF1 is secreted. Our analyses of these genes begin to build a paradigm for sperm-secreted or reproductive-tract-secreted proteins that coat the sperm surface and influence their survival, motility, and/or the ability to fertilize the egg.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Male , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Amino Acid Sequence , Membrane Proteins/metabolism , Semen/metabolism , Spermatozoa/metabolism , Fertilization , Sperm-Ovum Interactions , Sperm Proteins , Immunoglobulin Domains , Mammals
3.
Genetics ; 222(4)2022 11 30.
Article in English | MEDLINE | ID: mdl-36255260

ABSTRACT

The unequal partitioning of molecules and organelles during cell division results in daughter cells with different fates. An extreme example is female meiosis, in which consecutive asymmetric cell divisions give rise to 1 large oocyte and 2 small polar bodies with DNA and minimal cytoplasm. Here, we test the hypothesis that during an asymmetric cell division during spermatogenesis of the nematode Auanema rhodensis, the late segregating X chromatids orient the asymmetric partitioning of cytoplasmic components. In previous studies, the secondary spermatocytes of wild-type XO males were found to divide asymmetrically to generate functional spermatids that inherit components necessary for sperm viability and DNA-containing residual bodies that inherit components to be discarded. Here we extend that analysis to 2 novel contexts. First, the isolation and analysis of a strain of mutant XX pseudomales revealed that such animals have highly variable patterns of X-chromatid segregation. The pattern of late segregating X chromatids nevertheless predicted the orientation of organelle partitioning. Second, while wild-type XX hermaphrodites were known to produce both 1X and 2X sperm, here, we show that spermatocytes within specific spermatogonial clusters exhibit 2 different patterns of X-chromatid segregation that correlate with distinct patterns of organelle partitioning. Together this analysis suggests that A. rhodensis has coopted lagging X chromosomes during anaphase II as a mechanism for determining the orientation of organelle partitioning.


Subject(s)
Chromatids , Spermatocytes , Animals , Male , Female , Chromatids/genetics , Semen , Meiosis , Organelles
4.
G3 (Bethesda) ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36135804

ABSTRACT

Spermatogenesis is the process through which mature male gametes are formed and is necessary for the transmission of genetic information. While much work has established how sperm fate is promoted and maintained, less is known about how the sperm morphogenesis program is executed. We previously identified a novel role for the nuclear hormone receptor transcription factor, NHR-23, in promoting Caenorhabditis elegans spermatogenesis. The depletion of NHR-23 along with SPE-44, another transcription factor that promotes spermatogenesis, caused additive phenotypes. Through RNA-seq, we determined that NHR-23 and SPE-44 regulate distinct sets of genes. The depletion of both NHR-23 and SPE-44 produced yet another set of differentially regulated genes. NHR-23-regulated genes are enriched in phosphatases, consistent with the switch from genome quiescence to post-translational regulation in spermatids. In the parasitic nematode Ascaris suum, MFP1 and MFP2 control the polymerization of Major Sperm Protein, the molecule that drives sperm motility and serves as a signal to promote ovulation. NHR-23 and SPE-44 regulate several MFP2 paralogs, and NHR-23 depletion from the male germline caused defective localization of MSD/MFP1 and NSPH-2/MFP2. Although NHR-23 and SPE-44 do not transcriptionally regulate the casein kinase gene spe-6, a key regulator of sperm development, SPE-6 protein is lost following NHR-23+SPE-44 depletion. Together, these experiments provide the first mechanistic insight into how NHR-23 promotes spermatogenesis and an entry point to understanding the synthetic genetic interaction between nhr-23 and spe-44.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Female , Male , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Mutation , Sperm Motility , Semen/metabolism , Spermatogenesis/genetics , Transcription Factors/genetics
5.
G3 (Bethesda) ; 11(11)2021 10 19.
Article in English | MEDLINE | ID: mdl-34849789

ABSTRACT

To acquire and maintain directed cell motility, Caenorhabditis elegans sperm must undergo extensive, regulated cellular remodeling, in the absence of new transcription or translation. To regulate sperm function, nematode sperm employ large numbers of protein kinases and phosphatases, including SPE-6, a member of C. elegans' highly expanded casein kinase 1 superfamily. SPE-6 functions during multiple steps of spermatogenesis, including functioning as a "brake" to prevent premature sperm activation in the absence of normal extracellular signals. Here, we describe the subcellular localization patterns of SPE-6 during wild-type C. elegans sperm development and in various sperm activation mutants. While other members of the sperm activation pathway associate with the plasma membrane or localize to the sperm's membranous organelles, SPE-6 surrounds the chromatin mass of unactivated sperm. During sperm activation by either of two semiautonomous signaling pathways, SPE-6 redistributes to the front, central region of the sperm's pseudopod. When disrupted by reduction-of-function alleles, SPE-6 protein is either diminished in a temperature-sensitive manner (hc187) or is mislocalized in a stage-specific manner (hc163). During the multistep process of sperm activation, SPE-6 is released from its perinuclear location after the spike stage in a process that does not require the fusion of membranous organelles with the plasma membrane. After activation, spermatozoa exhibit variable proportions of perinuclear and pseudopod-localized SPE-6, depending on their location within the female reproductive tract. These findings provide new insights regarding SPE-6's role in sperm activation and suggest that extracellular signals during sperm migration may further modulate SPE-6 localization and function.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Chromosomes , Female , Male , Mutation , Spermatogenesis , Spermatozoa
6.
Cells ; 10(7)2021 07 15.
Article in English | MEDLINE | ID: mdl-34359962

ABSTRACT

Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two "seminal" contributions of G. A. Parker.


Subject(s)
Fertility/physiology , Nematoda/metabolism , Reproduction/physiology , Sex Ratio , Animals , Humans , Male , Selection, Genetic , Spermatozoa/cytology
7.
MicroPubl Biol ; 20212021.
Article in English | MEDLINE | ID: mdl-34316545

ABSTRACT

Until recently, the only verified component of Fibrous Bodies (FBs) within Caenorhabditis elegans spermatocytes was the Major Sperm Protein (MSP), a nematode-specific cytoskeletal element. Earlier studies in the pig parasite Ascaris suum had identified accessory proteins that facilitate MSP polymerization and depolymerization within the pseudopod of crawling spermatozoa. In this study, we show that C. elegans homologs of the two Ascaris accessory proteins MFP1 and MFP2 co-localize with MSP in both the pseudopods of C. elegans sperm and the FBs of C. elegans spermatocytes.

8.
Development ; 148(5)2021 03 05.
Article in English | MEDLINE | ID: mdl-33558389

ABSTRACT

Many specialized cells use unconventional strategies of cytoskeletal control. Nematode spermatocytes discard their actin and tubulin following meiosis, and instead employ the regulated assembly/disassembly of the Major Sperm Protein (MSP) to drive sperm motility. However, prior to the meiotic divisions, MSP is sequestered through its assembly into paracrystalline structures called fibrous bodies (FBs). The accessory proteins that direct this sequestration process have remained mysterious. This study reveals SPE-18 as an intrinsically disordered protein that is essential for MSP assembly within FBs. In spe-18 mutant spermatocytes, MSP forms disorganized cortical fibers, and the cells arrest in meiosis without forming haploid sperm. In wild-type spermatocytes, SPE-18 localizes to pre-FB complexes and functions with the kinase SPE-6 to localize MSP assembly. Changing patterns of SPE-18 localization uncover previously unappreciated complexities in FB maturation. Later, within newly individualized spermatids, SPE-18 is rapidly lost, yet SPE-18 loss alone is insufficient for MSP disassembly. Our findings reveal an alternative strategy for sequestering cytoskeletal elements, not as monomers but in localized, bundled polymers. Additionally, these studies provide an important example of disordered proteins promoting ordered cellular structures.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Spermatocytes/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cell Cycle Checkpoints , Cytoskeleton/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Male , Meiosis , Mutagenesis , Sequence Alignment , Spermatids/metabolism , Spermatocytes/cytology , Spermatocytes/growth & development , Spermatogenesis
9.
Development ; 147(22)2020 11 27.
Article in English | MEDLINE | ID: mdl-33060131

ABSTRACT

In sexually reproducing metazoans, spermatogenesis is the process by which uncommitted germ cells give rise to haploid sperm. Work in model systems has revealed mechanisms controlling commitment to the sperm fate, but how this fate is subsequently executed remains less clear. While studying the well-established role of the conserved nuclear hormone receptor transcription factor, NHR-23/NR1F1, in regulating C. elegans molting, we discovered that NHR-23/NR1F1 is also constitutively expressed in developing primary spermatocytes and is a critical regulator of spermatogenesis. In this novel role, NHR-23/NR1F1 functions downstream of the canonical sex-determination pathway. Degron-mediated depletion of NHR-23/NR1F1 within hermaphrodite or male germlines causes sterility due to an absence of functional sperm, as depleted animals produce arrested primary spermatocytes rather than haploid sperm. These spermatocytes arrest in prometaphase I and fail to either progress to anaphase or attempt spermatid-residual body partitioning. They make sperm-specific membranous organelles but fail to assemble their major sperm protein into fibrous bodies. NHR-23/NR1F1 appears to function independently of the known SPE-44 gene regulatory network, revealing the existence of an NHR-23/NR1F1-mediated module that regulates the spermatogenesis program.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Spermatids/metabolism , Spermatocytes/metabolism , Spermatogenesis/physiology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Male , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Spermatids/cytology , Spermatocytes/cytology
10.
J Vis Exp ; (146)2019 04 27.
Article in English | MEDLINE | ID: mdl-31081817

ABSTRACT

Here we are presenting a novel method to study the sumoylation of proteins and their sub-cellular localization in mammalian cells and nematode oocytes. This method utilizes a recombinant modified SUMO-trapping protein fragment, kmUTAG, derived from the Ulp1 SUMO protease of the stress-tolerant budding yeast Kluyveromyces marxianus. We have adapted the properties of the kmUTAG for the purpose of studying sumoylation in a variety of model systems without the use of antibodies. For the study of SUMO, KmUTAG has several advantages when compared to antibody-based approaches. This stress-tolerant SUMO-trapping reagent is produced recombinantly, it recognizes native SUMO isoforms from many species, and unlike commercially available antibodies it shows reduced affinity for free, unconjugated SUMO. Representative results shown here include the localization of SUMO conjugates in mammalian tissue culture cells and nematode oocytes.


Subject(s)
Small Ubiquitin-Related Modifier Proteins/metabolism , Animals , Caenorhabditis elegans/cytology , Fluorescence , Oocytes/cytology , Oocytes/metabolism , Recombinant Fusion Proteins/metabolism , Sumoylation
11.
Curr Biol ; 28(1): 93-99.e3, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29276124

ABSTRACT

Three key steps in meiosis allow diploid organisms to produce haploid gametes: (1) homologous chromosomes (homologs) pair and undergo crossovers; (2) homologs segregate to opposite poles; and (3) sister chromatids segregate to opposite poles. The XX/XO sex determination system found in many nematodes [1] facilitates the study of meiosis because variation is easily recognized [2-4]. Here we show that meiotic segregation of X chromosomes in the trioecious nematode Auanema rhodensis [5] varies according to sex (hermaphrodite, female, or male) and type of gametogenesis (oogenesis or spermatogenesis). In this species, XO males exclusively produce X-bearing sperm [6, 7]. The unpaired X precociously separates into sister chromatids, which co-segregate with the autosome set to generate a functional haplo-X sperm. The other set of autosomes is discarded into a residual body. Here we explore the X chromosome behavior in female and hermaphrodite meioses. Whereas X chromosomes segregate following the canonical pattern during XX female oogenesis to yield haplo-X oocytes, during XX hermaphrodite oogenesis they segregate to the first polar body to yield nullo-X oocytes. Thus, crosses between XX hermaphrodites and males yield exclusively male progeny. During hermaphrodite spermatogenesis, the sister chromatids of the X chromosomes separate during meiosis I, and homologous X chromatids segregate to the functional sperm to create diplo-X sperm. Given these intra-species, intra-individual, and intra-gametogenesis variations in the meiotic program, A. rhodensis is an ideal model for studying the plasticity of meiosis and how it can be modulated.


Subject(s)
Chromatids/physiology , Chromosome Segregation/physiology , Rhabditoidea/physiology , X Chromosome/physiology , Animals , Female , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/physiology , Male , Meiosis , Oogenesis/physiology , Rhabditoidea/genetics , Spermatogenesis/physiology
12.
Development ; 144(18): 3253-3263, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28827395

ABSTRACT

Asymmetric partitioning is an essential component of many developmental processes. As spermatogenesis concludes, sperm are streamlined by discarding unnecessary cellular components into cellular wastebags called residual bodies (RBs). During nematode spermatogenesis, this asymmetric partitioning event occurs shortly after anaphase II, and both microtubules and actin partition into a central RB. Here, we use fluorescence and transmission electron microscopy to elucidate and compare the intermediate steps of RB formation in Caenorhabditis elegans, Rhabditis sp. SB347 (recently named Auanema rhodensis) and related nematodes. In all cases, intact microtubules reorganize and move from centrosomal to non-centrosomal sites at the RB-sperm boundary whereas actin reorganizes through cortical ring expansion and clearance from the poles. However, in species with tiny spermatocytes, these cytoskeletal changes are restricted to one pole. Consequently, partitioning yields one functional sperm with the X-bearing chromosome complement and an RB with the other chromosome set. Unipolar partitioning may not require an unpaired X, as it also occurs in XX spermatocytes. Instead, constraints related to spermatocyte downsizing may have contributed to the evolution of a sperm cell equivalent to female polar bodies.


Subject(s)
Asymmetric Cell Division , Caenorhabditis elegans/cytology , Cell Size , Cytoskeleton/metabolism , Sex Ratio , Spermatozoa/cytology , Actins/metabolism , Animals , Centrosome/metabolism , Cytoskeleton/ultrastructure , Female , Hermaphroditic Organisms/cytology , Male , Meiosis , Microtubules/metabolism , Models, Biological , Spermatocytes/cytology , Spermatocytes/ultrastructure , Spermatogenesis , Spermatozoa/ultrastructure
13.
Dev Biol ; 430(2): 362-373, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28844904

ABSTRACT

Studies of gamete development in the self-fertile hermaphrodites of Caenorhabditis elegans have significantly contributed to our understanding of fundamental developmental mechanisms. However, evolutionary transitions from outcrossing males and females to self-fertile hermaphrodites have convergently evolved within multiple nematode sub-lineages, and whether the C. elegans pattern of self-fertile hermaphroditism and gamete development is representative remains largely unexplored. Here we describe a pattern of sperm production in the trioecious (male/female/hermaphrodite) nematode Rhabditis sp. SB347 (recently named Auanema rhodensis) that differs from C. elegans in two striking ways. First, while C. elegans hermaphrodites make a one-time switch from sperm to oocyte production, R. sp. SB347 hermaphrodites continuously produce both sperm and oocytes. Secondly, while C. elegans germ cell proliferation is limited to germline stem cells (GSCs), sperm production in R. sp. SB347 includes an additional population of mitotically dividing cells that are a developmental intermediate between GSCs and fully differentiated spermatocytes. These cells are present in males and hermaphrodites but not females, and exhibit key characteristics of spermatogonia - the mitotic progenitors of spermatocytes in flies and vertebrates. Specifically, they exist outside the stem cell niche, increase germ cell numbers by transit-amplifying divisions, and synchronously proliferate within germ cell cysts. We also discovered spermatogonia in other trioecious Rhabditis species, but not in the male/female species Rhabditis axei or the more distant hermaphroditic Oscheius tipulae. The discovery of simultaneous hermaphroditism and spermatogonia in a lab-cultivatable nematode suggests R. sp. SB347 as a richly informative species for comparative studies of gametogenesis.


Subject(s)
Hermaphroditic Organisms/physiology , Oogenesis/physiology , Ovum/cytology , Rhabditida/physiology , Spermatogenesis/physiology , Spermatozoa/cytology , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/physiology , Female , Male , Rhabditida/growth & development , Sex Determination Processes , Species Specificity , Spermatogonia/physiology
14.
Curr Biol ; 25(24): 3220-4, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26671668

ABSTRACT

Fertilization is a conserved process in all sexually reproducing organisms whereby sperm bind and fuse with oocytes. Despite the importance of sperm-oocyte interactions in fertilization, the molecular underpinnings of this process are still not well understood. The only cognate ligand-receptor pair identified in the context of fertilization is sperm-surface Izumo and egg-surface Juno in the mouse [1]. Here we describe a genetic screening strategy to isolate fertilization mutants in Caenorhabditis elegans in order to generate a more complete inventory of molecules required for gamete interactions. From this screening strategy, we identified, cloned, and characterized spe-45, a gene that encodes an Izumo-like immunoglobulin superfamily protein. Mammalian Izumo is required for male fertility and has the same basic mutant phenotype as spe-45. Worms lacking spe-45 function produce morphologically normal and motile sperm that cannot fuse with oocytes despite direct contact in the reproductive tract. The power of this screen to identify proteins with ancient sperm functions suggests that characterization of additional mutants from our screen may reveal other deeply conserved components in fertility pathways and complement studies in other organisms.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Fertilization , Membrane Proteins/genetics , Animals , Female , Fertility , Male , Oocytes/physiology , Spermatogenesis , Spermatozoa/physiology
15.
Adv Exp Med Biol ; 757: 171-203, 2013.
Article in English | MEDLINE | ID: mdl-22872478

ABSTRACT

During spermatogenesis, pluripotent germ cells differentiate to become efficient delivery vehicles to the oocyte of paternal DNA. Though male and female germ cells both undergo meiosis to produce haploid complements of DNA, at the same time they also each undergo distinct differentiation processes that result in either sperm or oocytes. This review will discuss our current understanding of mechanisms of sperm formation and differentiation in Caenorhabditis elegans gained from studies that employ a combination of molecular, transcriptomic, and cell biological approaches. Many of these processes also occur during spermatogenesis in other organisms but with differences in timing, molecular machinery, and morphology. In C. elegans, sperm differentiation is implemented by varied modes of gene regulation, including the genomic organization of genes important for sperm formation, the generation of sperm-specific small RNAs, and the interplay of specific transcriptional activators. As sperm formation progresses, chromatin is -systematically remodeled to allow first for the implementation of differentiation programs, then for sperm-specific DNA packaging required for transit of paternal genetic and epigenetic information. Sperm also exhibit distinctive features of -meiotic progression, including the formation of a unique karyosome state and the centrosomal-based segregation of chromosomes during symmetric meiotic -divisions. Sperm-specific organelles are also assembled and remodeled as cells complete -meiosis and individualize in preparation for activation, morphogenesis, and the acquisition of motility. Finally, in addition to DNA, sperm contribute specific cellular factors that contribute to successful embryogenesis.


Subject(s)
Caenorhabditis elegans/cytology , Germ Cells/cytology , Spermatogenesis/physiology , Animals , Caenorhabditis elegans/growth & development
16.
PLoS Genet ; 8(4): e1002678, 2012.
Article in English | MEDLINE | ID: mdl-22570621

ABSTRACT

The sperm/oocyte decision in the hermaphrodite germline of Caenorhabditis elegans provides a powerful model for the characterization of stem cell fate specification and differentiation. The germline sex determination program that governs gamete fate has been well studied, but direct mediators of cell-type-specific transcription are largely unknown. We report the identification of spe-44 as a critical regulator of sperm gene expression. Deletion of spe-44 causes sperm-specific defects in cytokinesis, cell cycle progression, and organelle assembly resulting in sterility. Expression of spe-44 correlates precisely with spermatogenesis and is regulated by the germline sex determination pathway. spe-44 is required for the appropriate expression of several hundred sperm-enriched genes. The SPE-44 protein is restricted to the sperm-producing germline, where it localizes to the autosomes (which contain sperm genes) but is excluded from the transcriptionally silent X chromosome (which does not). The orthologous gene in other Caenorhabditis species is similarly expressed in a sex-biased manner, and the protein likewise exhibits autosome-specific localization in developing sperm, strongly suggestive of an evolutionarily conserved role in sperm gene expression. Our analysis represents the first identification of a transcriptional regulator whose primary function is the control of gamete-type-specific transcription in this system.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Sex Determination Processes , Signal Transduction/genetics , Spermatozoa , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Checkpoints , Cell Differentiation , Cell Lineage , Chromatin , Cytokinesis , Male , Spermatogenesis/genetics , Spermatozoa/cytology , Spermatozoa/growth & development , Spermatozoa/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Transcription, Genetic
17.
Methods Cell Biol ; 107: 35-66, 2012.
Article in English | MEDLINE | ID: mdl-22226520

ABSTRACT

Immunofluorescence microscopy is a powerful technique that is widely used by researchers to assess both the localization and endogenous expression levels of their favorite proteins. The application of this approach to C. elegans, however, requires special methods to overcome the diffusion barrier of a dense, collagen-based outer cuticle. This chapter outlines several alternative fixation and permeabilization strategies for overcoming this problem and for producing robust immunohistochemical staining of both whole animals and freeze-fractured samples. In addition, we provide an accounting of widely used antibody reagents available to the research community. We also describe several approaches aimed at reducing non-specific background often associated with immunohistochemical studies. Finally, we discuss a variety of approaches to raise antisera directed against C. elegans antigens.


Subject(s)
Caenorhabditis elegans Proteins/analysis , Caenorhabditis elegans/physiology , Larva/physiology , Microscopy, Fluorescence/methods , Staining and Labeling/methods , Animals , Antibodies, Helminth/biosynthesis , Antigens, Helminth/analysis , Buffers , Caenorhabditis elegans/anatomy & histology , Caenorhabditis elegans/embryology , Caenorhabditis elegans Proteins/metabolism , Embryo, Nonmammalian , Embryonic Development , Fixatives , Fluorescent Antibody Technique , Freeze Fracturing , Larva/anatomy & histology , Microscopy, Fluorescence/instrumentation , Tissue Fixation
18.
Methods Cell Biol ; 106: 343-75, 2011.
Article in English | MEDLINE | ID: mdl-22118284

ABSTRACT

Although the general events surrounding fertilization in many species are well described, the molecular underpinnings of fertilization are still poorly understood. Caenorhabditis elegans has emerged as a powerful model system for addressing the molecular and cell biological mechanism of fertilization. A primary advantage is the ability to isolate and propagate mutants that effect gametes and no other cells. This chapter provides conceptual guidelines for the identification, maintenance, and experimental approaches for the study fertility mutants.


Subject(s)
Caenorhabditis elegans/genetics , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Cell Biology , Female , Fertility , Fertilization/genetics , Gametogenesis , Infertility/genetics , Male , Mutation , Oocytes/physiology , Sperm Motility , Spermatozoa/physiology
20.
Genetics ; 189(2): 549-60, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21775471

ABSTRACT

In the nematode Caenorhabditis elegans, temperature-sensitive mutants of emb-1 arrest as one-cell embryos in metaphase of meiosis I in a manner that is indistinguishable from embryos that have been depleted of known subunits of the anaphase-promoting complex or cyclosome (APC/C). Here we show that the emb-1 phenotype is enhanced in double mutant combinations with known APC/C subunits and suppressed in double mutant combinations with known APC/C suppressors. In addition to its meiotic function, emb-1 is required for mitotic proliferation of the germline. These studies reveal that emb-1 encodes K10D2.4, a homolog of the small, recently discovered APC/C subunit, APC16.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Ubiquitin-Protein Ligase Complexes/genetics , Alleles , Amino Acid Sequence , Anaphase-Promoting Complex-Cyclosome , Animals , Base Sequence , Cell Proliferation , Drosophila Proteins , Female , Genetic Complementation Test , Germ Cells/cytology , Germ Cells/metabolism , Male , Meiosis/genetics , Molecular Sequence Data , Mutation , Phenotype , Sequence Homology, Amino Acid , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...