Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transgenic Res ; 26(1): 65-75, 2017 02.
Article in English | MEDLINE | ID: mdl-27565642

ABSTRACT

The development of tools which ensure the desired level of transgene expression in plastids is a prerequisite for the effective utilization of these plant organelles for the deployment of bioactive proteins. High-level accumulation of target proteins is considered as a positive feature of transplastomic plants, but excessive accumulation of foreign proteins may have deleterious effects on host plants. On the other hand, expression at low levels can result in ineffective phenotypes. We compared the effectiveness of different 5'-regulatory sequences in driving the expression of a reporter gene, ß-glucuronidase (uidA), in tobacco chloroplasts. To achieve varying expression levels, we have chosen heterologous 5'-regulatory sequences which either differ significantly from their homologous counterparts or depend on specific nuclear encoded factors. The Medicago truncatula psbA promoter/5'-UTR supported the highest levels of protein accumulation, surpassing the other tested sequences by two to three orders of magnitude. The heterologous regulatory sequence of Phaseolus vulgaris rbcL gene was as efficient in tobacco chloroplasts as the corresponding homologous promoter/5'-UTR. The Arabidopsis thaliana ndhF promoter/5'-UTR supported as high reporter activity levels as the rbcL 5'-sequences, whereas the effectiveness of A. thaliana psbN promoter/5'-UTR was three fold lower. The characterized regulatory sequences can be utilized to establish transplastomic lines with desirable levels of target protein accumulation. The ability to control transgene expression should be useful for achieving appropriate levels of protein accumulation and thereby avoid their negative impacts on host plant physiology.


Subject(s)
Chloroplasts/genetics , Plants, Genetically Modified/genetics , Plastids/genetics , Promoter Regions, Genetic , Arabidopsis/genetics , Gene Expression Regulation, Plant , Genes, Reporter , Glucuronidase/genetics , Medicago truncatula/genetics , NADH Dehydrogenase/genetics , Phaseolus/genetics , Plant Proteins/genetics , Plastids/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Nicotiana/genetics , Nicotiana/growth & development
2.
Prep Biochem Biotechnol ; 46(4): 342-5, 2016 May 18.
Article in English | MEDLINE | ID: mdl-25838068

ABSTRACT

An efficient and rapid protocol for the establishment of Artemisia tilesii "hairy" root culture is reported. Leaf explants of aseptically growing plants were cocultured with Agrobacterium rhizogenes A4 wild strain or A. rhizogenes carrying the plasmids with nptII and ifn-α2b genes. Root formation on the explants started in 5-6 days after their cocultivation with bacterial suspension. Prolongation of explant cultivation time on the medium without cefotaxime led to stimulation of root growth. The effects of sucrose concentration as well as of the levels of synthetic indole-3-butyric acid (IBA) and native growth regulator Emistim on the stimulation of A. tilesii "hairy" root growth were studied. Maximum stimulating effect both for the control and for transgenic roots was observed in case of root cultivation on the media supplemented with IBA-up to 7.95- and 9.1-fold biomass increase, respectively. Cultivation on the medium with 10 µl/L Emistime has also led to the control roots growth stimulation (up to 2.75-fold). Emistime at 5 µl/L concentration led to 5.46-fold mass increase in only one "hairy" root line. Higher sucrose content (40 g/L) stimulated growth of two hairy root lines but had no effect on growth of the control roots.


Subject(s)
Agrobacterium/genetics , Artemisia/physiology , Plant Roots/growth & development , Transformation, Genetic , Polymerase Chain Reaction
3.
Tsitol Genet ; 49(4): 11-6, 2015.
Article in English | MEDLINE | ID: mdl-26419064

ABSTRACT

Cichorium intybus L. is an important vegetable crop used as salad (leaf form) and for the production of coffee substitutes (root form). At the same time these plants can also be used in biotechnologies for synthesis of pharmaceutical proteins. Here we report the possibility of high frequency Agrobacterium rhizogenes- or A. tumefaciens-mediated transformation of C. intybus L. for construction of transgenic "hairy" roots and plants. The used plasmids contained target human interferonifn-α2b gene, Mycobacterium tuberculosis ESAT6:Ag85B antigene esxA::fbpB(ΔTMD) fused gene and human telomerase reverse transcriptase h Tert gene. Using of nptII gene as a selective one was preferable to the bar gene for chicory. In this case the frequency of transgenic plants or "hairy" roots formation was significantly higher. Cultivation of explants on the medium with Basta in concentration 1-2 mg/l have led to plants death or to significant reduction of number of shoots formed. Frequency of "hairy" roots formation varied from 5.9 to 42.3% after A. rhizogenes-mediated transformation. Frequency of regeneration of transgenic plants varied from 10 to 86% after A. tumefaciens-mediated transformation. Both A. rhizogenes- and A. tumefaciens-mediated transformation frequency depended on the type of explants, roots or cotyledons, and vector used. Usage of A. tumefaciens carrying pCB064 plasmid (target esxA:fbpB(ΔTMD) fused gene and nptII selective gene) resulted in the most effective regeneration of transgenic plants with regeneration frequency up to 86%. In the case of chicory A. rhizogenes-mediated transformation the highest regeneration frequency up to 42.3% was demonstrated using p CB161 vector with ifn-α2b target gene and nptII selective gene.


Subject(s)
Agrobacterium/genetics , Cichorium intybus/genetics , Cotyledon/genetics , Plant Roots/genetics , Plasmids/metabolism , Transformation, Genetic , Acyltransferases/genetics , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cichorium intybus/anatomy & histology , Cotyledon/anatomy & histology , Genetic Markers , Genetic Vectors , Interferon-alpha/genetics , Mycobacterium tuberculosis/chemistry , Plant Roots/anatomy & histology , Plants, Genetically Modified , Plasmids/chemistry , Sodium-Phosphate Cotransporter Proteins, Type II/genetics , Telomerase/genetics
4.
Theor Appl Genet ; 88(5): 525-9, 1994 Jul.
Article in English | MEDLINE | ID: mdl-24186105

ABSTRACT

A procedure for cybrid production, based on double treatment of donor protoplasts by physical and afterwards chemical mutagens at superlethal doses (γ-irradiation at a dose of 1000 Gy was applied for the inactivation of nuclei; 3-5 mMN-nitroso-N-methylurea was used for the efficient induction of plastome mutation) and the rescuing of mutant plastids after fusion with untreated recipient protoplasts, was developed. For identification of mutant donor-type plastids in fusion products a selection for streptomycin was performed. In two sets of experiments, in whichS. tuberosum served as the recipient of foreign cytoplasm with the wild tuber-bearing speciesS. bulbocastanum andS. pinnatisectum as donors, a total of about 40 streptomycin-resistant colonies was isolated. Eight regenerants from theS. tuberosum+S. bulbacastanum fusion combination and four fromS. tuberosum+S. pinnatisectum were further investigated using chromosome counting, analysis of esterase isoenzymes, restriction analysis of organelle DNA, and blot hybridization. All but one plant from both combinations were characterised as potato cybrids possessing exclusively foreign plastids and retaining a morphology typical of the recipient. Only in one line was rearranged mtDNA detected. The availability of potato cybrids facilitates the analysis of plastome-encoded breeding traits and the identification of the most valuable source of cytoplasm among the wild potato species. The described system for producing cybrids without genetic selectable markers in the parental material offers the possibility for the rescue of cytoplasmic mutations which are impossible to isolate by conventional approaches.

5.
Plant Cell Rep ; 8(11): 660-3, 1990 Apr.
Article in English | MEDLINE | ID: mdl-24232780

ABSTRACT

Shoot and leaf segments of a non-regenerable Medicago sativa L. genotype were cocultivated with the "shooty" mutant of Agrobacterium tumefaciens carrying the pGV 2206 plasmid. Transformed callus lines were selected and regenerated on the hormone free B5 medium. Southern blot analysis demonstrated integration of T-DNA in to the genome of the regenerated plants.Transgenic plants resistant to kanamycin were obtained by electroporation of Medicago borealis protoplasts with the pGA 472 plasmid DNA.

SELECTION OF CITATIONS
SEARCH DETAIL
...