Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(43): 26974-26987, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-35480010

ABSTRACT

The "green" synthesis of magnetite and cobalt ferrite nanoparticles (Fe3O4-NPs and CoFe2O4-NPs) using extracts of Artemisia annua L "hairy" roots was proposed. In particular, the effect and role of important variables in the 'green' synthesis process, including the metal-salt ratio, various counter ions in the reaction mixture, concentration of total flavonoids and reducing power of the extract, were evaluated. The morphology and size distribution of the magnetic nanoparticles (MNPs) depended on the metal oxidation state and ratio of Fe(iii) : Fe(ii) in the initial reaction mixture. MNPs obtained from divalent metal salts in the reaction mixture were non-uniform in size with high aggregation level. Samples obtained by the FeCl3/FeSO4 mixture with a ratio of Fe(iii) : Fe(ii) = 1 : 2 showed an irregular shape of the nanoparticles and high aggregation level. MNPs obtained by the FeCl3/FeSO4/CoCl2 mixture showed a regular shape with slight aggregation, and were in the nanosize range (10-17 nm). Thus, this mixture as a metal-precursor was used for MNP biosynthesis in the subsequent experiments. The XRD data showed that the magnetic specimens contained mainly spinel type phase. The data of EDX and XPS analysis indicated that the product of the "green" synthesis was magnetite with some impurities, owing to the obtained ratio of Fe : O being similar to the theoretical atomic ratio of magnetite (3 : 4). The Fe3O4-NP samples were superparamagnetic with high magnetization (until 68 emu g-1). The Co-containing MNPs demonstrated low ferromagnetic properties. The MNPs with pure magnetite phase, very good magnetization and uniform size distribution (ca. 12-14 nm) were prepared by the "hairy" root extract characterized by the highest amount of total flavonoids. According to the FTIR data, the synthesized Fe3O4-NPs had a core-shell like structure, in which the core was composed of Fe3O4, and the shell was formed by bioactive molecules. The presence of several organic compounds (such as flavonoids or carboxylic acids) plays a key role in the suppression of Fe3O4-NP aggregation without addition of a stabilizing agents. Synthesized Fe3O4-NP samples effectively removed Cu(ii) and Cd(ii) with the maximum adsorption capacity, reaching 29.9 mg g-1 and 33.5 mg g-1, respectively. It is probable that the presence of organic components in extracts plays an important role in the adsorption properties of biosynthesised MNPs. The obtained MNPs were successfully applied to the removal of heavy metal ions in the environmental water samples. Fe3O4-NPs also negatively affected plant growth in the case of using "hairy" roots as a test model, and the greatest inhibitory activity (99.56 wt%) was possessed by MNPs with high magnetic properties.

2.
Plant Physiol Biochem ; 152: 177-183, 2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32422534

ABSTRACT

Plants belonging to the genus Artemisia L. have been used for medicinal purposes since ancient times. These aromatic plants produce and accumulate a wide range of potent secondary metabolites, many of which have shown antioxidant, antiparasitic, antimicrobial, anti-inflammatory, and even anticancer activities. Enhanced biosynthesis of these compounds is a prerequisite for comprehensive studies of their therapeutic properties and cost-efficient use. Transformation of plants with Agrobacterium rhizogenes native root locus (rol) genes is a promising approach to increase the biosynthesis of plant secondary metabolites. The aim of the present study was to evaluate the effects of A. rhizogenes-mediated transformation on the flavonoid contents in hairy roots of medicinal herb A. tilesii Ledeb. Transgenic A. tilesii hairy root lines were analyzed for stable integration of the rolB and rolC transgenes into the plant genome, total flavonoid contents, antioxidant activities of extracts, and the spatiotemporal expression of two flavonoid biosynthetic genes, phenylalanine ammonialyase (PAL) and chalcone synthase (CHS). The flavonoid contents of A. tilesii directly correlated with the antiradical activity and reducing power of their respective lines, with the greatest antioxidant activity found in the plants with the highest level of total flavonoids. Furthermore, all hairy root lines demonstrated altered expression of plant native PAL and CHS genes. Most importantly, A. rhizogenes-mediated transformation enhanced the biosynthesis of natural antioxidants in A. tilesii, producing almost twice the amount of flavonoids than controls. These findings provide an opportunity for the identification of the bioactive molecules in A. tilesii extracts and their potential health benefits.

3.
RSC Adv ; 10(65): 39434-39446, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-35515379

ABSTRACT

The research was focused on the synthesis of silver nanoparticles (AgNPs) using extracts from the "hairy" root cultures of Artemisia tilesii Ledeb. and Artemisia annua L. The effect of operational parameters such as type of solvent, temperature of extraction, flavonoids concentration, and reducing power of the wormwood "hairy" root extracts on the particle size and yield of the resultant nanoparticles is reported for the first time. From the studied solvents, a water-ethanol mixture with a concentration of 70 vol% was found to be the best for the extraction of flavonoids from all "hairy" root cultures. The total flavonoid contents in A. annua and A. tilesii "hairy" root extracts were up to 80.0 ± 0.9 and 108 ± 4.4 mg RuE per g DW, respectively. Identification of flavonoids was confirmed by UPLC-ESI-UHR-Qq-TOF-MS analysis. Luteolin-7-ß-d-glucopyranosid, isorhamnetin 3-O-glucoside, baicalein-7-O-glucuronide, apigenin-7-O-glucoside, quercetin, sitosterol, caffeoylquinic, galic, chlorogenic and caffeic acids were founded in the extracts. These extracts demonstrated the high reducing activities. Spherical, oval and triangular nanoparticles with effective sizes of 5-100 nm were observed. The TEM data revealed great differences in the shapes of NPs, obtained from the extracts from different root clones. The clustered and irregular NPs were found in the case of using ethanol extracts, mostly aggregated and having the size of 10-50 nm. The sizes of AgNPs decreased to 10-30 nm in the case of using aqueous extracts obtained at 80 °C. Biosynthesized AgNPs showed surface plasmon resonance in the range of 400-450 nm. The antimicrobial activity of the as-produced AgNPs was studied by disc diffusion method on Gram-positive (Staphylococcus aureus ATCC 25923 (F-49)), Gram-negative (Pseudomonas aeruginosa ATCC 27853 (F-51), Escherichia coli ATCC 25922 (F-50)) and Candida albicans ATCC 88-653 strains. It was found that the nanoparticles in some cases possessed the greater ability to inhibit microorganism growth compared to 1 mM AgNO3 solution. The colloidal solutions of the obtained AgNPs were stable in the dark for 12 months at room temperature. Thus, the A. annua and A. tilesii "hairy" root extracts can be used for obtaining of bioactive AgNPs.

4.
Prep Biochem Biotechnol ; 49(1): 82-87, 2019.
Article in English | MEDLINE | ID: mdl-30621495

ABSTRACT

We investigated the effect of Agrobacterium rhizogenes-mediated transformation on antioxidant activity of Artemisia vulgaris "hairy" roots. It appeared that transformation may increase flavonoid content as well as DPPH-scavenging activity and ability to reduce Fe3+ as compared to the non-transformed plants. Some "hairy" roots accumulated flavonoids up to 73.1 ± 10.6 mg RE/g DW (while the amount of flavonoids in the leaves of non-transformed plants was up to 49.4 ± 5.0 mg RE/g DW). DPPH-scavenging activity of some "hairy" root lines was 3-3.8 times higher than such one of the roots of the control plants. The Fe3+-reducing power of most transgenic root extracts exceeded such power of the extracts of the roots of the control plants. The decrease in SOD activity was found in the most "hairy" root lines compared to the control roots. The increase of flavonoid content correlated with the increase of ability of extracts to scavenge DPPH*- radical and Fe3+ - reducing power. No correlation between SOD activity of extracts and concentration of flavonoids was found (p ≥ 0.2).Thus, transformation has led to the alteration in flavonoid accumulation and antioxidant activity in A. vulgaris "hairy" roots. Transgenic roots with high-antioxidant properties can be selected after A. rhizogenes-mediated transformation.


Subject(s)
Agrobacterium/physiology , Antioxidants/chemistry , Artemisia/chemistry , Flavonoids/analysis , Plant Extracts/pharmacology , Plant Roots/chemistry , Biphenyl Compounds/metabolism , Flavonoids/metabolism , Oxidation-Reduction , Picrates/metabolism , Plant Extracts/chemistry , Plant Roots/microbiology , Polymerase Chain Reaction , Transformation, Genetic/physiology
5.
Theor Appl Genet ; 113(3): 519-27, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16758189

ABSTRACT

The plastid genome of angiosperms represents an attractive target for genetic manipulations. However plastid transformation of higher plants, especially of agriculturally valuable crops is an extremely difficult problem. Transformation protocols developed for tobacco 15 years ago failed to produce similar results with more than a handful of other species so far. We have analyzed plastid transformability of remote cytoplasmic hybrids (cybrids) that combine nuclei of tobacco, an easily transformable species, and plastids of some other, recalcitrant Solanaceae species. Here, we demonstrate that the plastids of five species of Solanaceae family, representing two subfamilies and three tribes, can be easily transformed if the plastids of these species are transferred into a cell of a transformable species (tobacco). The results can be considered to be an alternative approach to the development of plastid transformation technologies for recalcitrant species using a transformable intermediary ("clipboard") host.


Subject(s)
Nicotiana/genetics , Plastids/genetics , Solanaceae/genetics , Transformation, Genetic , Chimera/genetics , Genetic Techniques , Plastids/transplantation , Solanaceae/ultrastructure , Nicotiana/anatomy & histology , Nicotiana/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...