Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Article in English | MEDLINE | ID: mdl-38584531

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) remains a significant contributor to mortality, often exacerbated by metastasis and chemoresistance. Novel therapeutic strategies are imperative to enhance current treatments. The dysregulation of the PI3K/Akt signaling pathway is implicated in CRC progression. This study investigates the therapeutic potential of Wortmannin, combined with 5-fluorouracil (5-FU), to target the PI3K/Akt pathway in CRC. METHODS: Anti-migratory and antiproliferative effects were assessed through wound healing and MTT assays. Apoptosis and cell cycle alterations were evaluated using Annexin V/Propidium Iodide Apoptosis Assay. Wortmannin's impact on the oxidant/antioxidant equilibrium was examined via ROS, SOD, CAT, MDA, and T-SH levels. Downstream target genes of the PI3K/AKT pathway were analyzed at mRNA and protein levels using RTPCR and western blot, respectively. RESULTS: Wortmannin demonstrated a significant inhibitory effect on cell proliferation, modulating survivin, cyclinD1, PI3K, and p-Akt. The PI3K inhibitor attenuated migratory activity, inducing E-cadherin expression. Combined Wortmannin with 5-FU induced apoptosis, increasing cells in sub-G1 via elevated ROS levels. CONCLUSION: This study underscores Wortmannin's potential in inhibiting CRC cell growth and migration through PI3K/Akt pathway modulation. It also highlights its candidacy for further investigation as a promising therapeutic option in colorectal cancer treatment.

2.
J Biomol Struct Dyn ; : 1-18, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165453

ABSTRACT

This study explores the computational discovery of non-peptide agonists targeting the Glucagon-Like Peptide-1 Receptor (GLP-1R) to enhance the safety of major coronary outcomes in individuals affected by Type 2 Diabetes. The objective is to identify novel compounds that can activate the GLP-1R pathway without the limitations associated with peptide agonists. Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular disease (CVD) and mortality, which is attributed to the accumulation of fat in organs, including the heart. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are frequently used to manage T2DM and could potentially offer cardiovascular benefits. Therefore, this study examines non-peptide agonists of GLP-1R to improve coronary safety in type 2 diabetes patients. After rigorous assessments, two standout candidates were identified, with natural compound 12 emerging as the most promising. This study represents a notable advancement in enhancing the management of coronary outcomes among individuals with type 2 diabetes. The computational methodology employed successfully pinpointed potential GLP-1R natural agonists, providing optimism for the development of safer and more effective therapeutic interventions. Although computational methodologies have provided crucial insights, realizing the full potential of these compounds requires extensive experimental investigations, crucial in advancing therapeutic strategies for this critical patient population.Communicated by Ramaswamy H. Sarma.

3.
Mini Rev Med Chem ; 24(1): 3-25, 2024.
Article in English | MEDLINE | ID: mdl-37073153

ABSTRACT

BACKGROUND: Natural products have optical activities with unusual structural characteristics or specific stereoselectivity, mostly including spiro-ring systems or quaternary carbon atoms. Expensive and time-consuming methods for natural product purification, especially natural products with bioactive properties, have encouraged chemists to synthesize those compounds in laboratories. Due to their significant role in drug discovery and chemical biology, natural products have become a major area of synthetic organic chemistry. Most medicinal ingredients available today are healing agents derived from natural resources, such as plants, herbs, and other natural products. METHODS: Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts. RESULTS: Developing bioactive compounds and drugs from natural products has remained challenging despite recent advances. A major challenge is not whether a target can be synthesized but how to do so efficiently and practically. Nature has the ability to create molecules in a delicate but effective manner. A convenient method is to imitate the biogenesis of natural products from microbes, plants, or animals for synthesizing natural products. Inspired by the mechanisms occurring in the nature, synthetic strategies facilitate laboratory synthesis of natural compounds with complicated structures. CONCLUSION: In this review, we have elaborated on the recent syntheses of natural products conducted since 2008 and provided an updated outline of this area of research (Covering 2008-2022) using bioinspired methods, including Diels-Alder dimerization, photocycloaddition, cyclization, and oxidative and radical reactions, which will provide an easy access to precursors for biomimetic reactions. This study presents a unified method for synthesizing bioactive skeletal products.


Subject(s)
Biological Products , Animals , Biological Products/chemistry , Biomimetics , Oxidation-Reduction , Carbon , Drug Discovery
4.
Diabetes Metab Syndr ; 18(1): 102934, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38154403

ABSTRACT

BACKGROUND AND AIMS: Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS: PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS: The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION: Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Animals , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Liver , Glucose , Fibrosis , Sodium , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
5.
Life Sci ; 328: 121865, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37336360

ABSTRACT

Immunosuppressive factors within the tumor microenvironment (TME), such as Transforming growth factor beta (TGF-ß), constitute a crucial hindrance to immunotherapeutic approaches in colorectal cancer (CRC). Furthermore, immune checkpoint factors (e.g., programmed death-ligand 1 [PD-L1]) inhibit T-cell proliferation and activation. To cope with the inhibitory effect of immune checkpoints, the therapeutic value of dual targeting PD-L1 and TGF-ß pathways via M7824 plus 5-FU in CRC has been evaluated. Integrative-systems biology approaches and RNAseq were used to assess the differential level of genes associated with 88 metastatic-CRC patients. The level of PD-L1 and TGF-ß was evaluated in a validation cohort. The anti-proliferative, migratory, and apoptotic effects of PD-L1/TGF-ß inhibitor, M7824, were assessed by MTT, wound-healing assay, and flow cytometry. Anti-tumor activity was assessed in a xenograft model, followed by biochemical studies and histological staining, and gene/protein expression analyses by RT-PCR and ELISA/IHC. The result of differentially expressed genes (DEGs) analysis showed 1268 upregulated and 1074 downregulated genes in CRC patients. Among the highest scoring genes and dysregulated pathways associated with CRC, PD-L1, and TGF-ß were identified and further validated in 92 CRC patients. Targeting of PD-L1-TGF-ß inhibited cell growth and migration, associated with modulation of CyclinD1 and MMP9. Furthermore, M7824 inhibited tumor growth via targeting TGF-ß and PD-L1 pathways, resulting in modulation of inflammatory response and fibrosis via TNF-α/IL6/CD4-8 and COL1A1/1A2, respectively. In conclusion, our data illustrated that co-targeting PD-L1 and TGF-ß pathways increased the effect of Fluorouracil (5-FU) and reduced the tumor growth in PD-L1/TGF-ß expressing tumors, providing a new therapeutic option in the treatment of CRC.


Subject(s)
B7-H1 Antigen , Colorectal Neoplasms , Humans , B7-H1 Antigen/metabolism , Transforming Growth Factor beta/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Tumor Microenvironment
6.
BMC Pulm Med ; 23(1): 203, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308948

ABSTRACT

BACKGROUND AND OBJECTIVE: Corona virus causes respiratory tract infections in mammals. The latest type of Severe Acute Respiratory Syndrome Corona-viruses 2 (SARS-CoV-2), Corona virus spread in humans in December 2019 in Wuhan, China. The purpose of this study was to investigate the relationship between type 2 diabetes mellitus (T2DM), and their biochemical and hematological factors with the level of infection with COVID-19 to improve the treatment and management of the disease. MATERIAL AND METHOD: This study was conducted on a population of 13,170 including 5780 subjects with SARS-COV-2 and 7390 subjects without SARS-COV-2, in the age range of 35-65 years. Also, the associations between biochemical factors, hematological factors, physical activity level (PAL), age, sex, and smoking status were investigated with the COVID-19 infection. RESULT: Data mining techniques such as logistic regression (LR) and decision tree (DT) algorithms were used to analyze the data. The results using the LR model showed that in biochemical factors (Model I) creatine phosphokinase (CPK) (OR: 1.006 CI 95% (1.006,1.007)), blood urea nitrogen (BUN) (OR: 1.039 CI 95% (1.033, 1.047)) and in hematological factors (Model II) mean platelet volume (MVP) (OR: 1.546 CI 95% (1.470, 1.628)) were significant factors associated with COVID-19 infection. Using the DT model, CPK, BUN, and MPV were the most important variables. Also, after adjustment for confounding factors, subjects with T2DM had higher risk for COVID-19 infection. CONCLUSION: There was a significant association between CPK, BUN, MPV and T2DM with COVID-19 infection and T2DM appears to be important in the development of COVID-19 infection.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Animals , Humans , Adult , Middle Aged , Aged , SARS-CoV-2 , Algorithms , Creatine Kinase , Data Mining , Mammals
7.
Chem Biodivers ; 20(5): e202300054, 2023 May.
Article in English | MEDLINE | ID: mdl-37026445

ABSTRACT

New series of triazole-tetrahydropyrimidinone(thione) hybrids (9a-g) were synthesized. FT-IR, 1 H-NMR, 13 C-NMR, elemental analysis and mass spectroscopic studies characterized the structures of the synthesized compounds. Then, the synthesized compounds were screened to determine the urease inhibitory activity. Methyl 4-(4-((1-(2-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (9c) exhibited the highest urease inhibitory activity (IC50 =25.02 µM) among the compounds which was almost similar to thiourea as standard (IC50 =22.32 µM). The docking study of the screened compounds demonstrated that these compounds fit well in the urease active site. Based on the docking study, compound 9c with the highest urease inhibitory activity showed chelates with both Ni2+ ions of the urease active site. Moreover, the molecular dynamic study of the most potent compounds showed that they created important interactions with the active site flap residues, His322, Cys321, and Met317.


Subject(s)
Molecular Dynamics Simulation , Urease , Structure-Activity Relationship , Thiones/pharmacology , Triazoles/pharmacology , Spectroscopy, Fourier Transform Infrared , Molecular Docking Simulation , Enzyme Inhibitors/chemistry , Molecular Structure
8.
Curr Med Chem ; 30(30): 3441-3471, 2023.
Article in English | MEDLINE | ID: mdl-36043748

ABSTRACT

Diabetes is a chronic disease state in which the pancreas fails to secrete sufficient insulin, resulting in an elevation of blood glucose levels. As one of the most prevalent diseases worldwide, diabetes is recognized as a global health concern that, if undiagnosed or untreated, can lead to serious and life-threatening complications, such as kidney failure, cardiovascular disease and diabetic retinopathy. Despite progress in the diagnosis of diabetes, limitations still exist with current analytical techniques, and, therefore, the development of precise sensing devices for on-site, real-time detection of diabetes is needed. Biosensors have contributed significantly to the field of diabetes healthcare, due to their cost-effectiveness, portability, ease of use, and rapid assay time. Recently, there has been a preference for the utilization of aptamers over antibodies in designing biosensors. Aptasensors, biosensors made with aptamers, offer potential in the diagnosis of diabetes. Aptamers, due to having lower molecular weight, low price, and stability over a wide temperature range and pH range, their in vitro synthesis, and the ability to refold after being removed from denaturing conditions compared to antibodies, have some distinctive characteristics as well as diverse types, such as optical FNA-based biosensors, colorimetric biosensors, fluorescent biosensors and electrochemical FNA-based biosensors. With this in mind, we highlight the recent developments and novel perspectives in the field of aptasensor design to quantitatively monitor diabetes biomarkers. Finally, some results are highlighted to offer a basis for the future design of aptasensor kits for diabetes diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Diabetes Mellitus , Humans , Technology , Biosensing Techniques/methods , Colorimetry/methods , Diabetes Mellitus/diagnosis
9.
Microb Drug Resist ; 28(11): 1003-1018, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36219761

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes several serious health problems and numerous forms of virulence. During the treatment of P. aeruginosa infections, the development of multidrug-resistant isolates creates significant clinical problems. Using antivirulence compounds to disrupt pathogenicity rather than killing the bacterium may be an interesting strategy to overcome this problem, because less harsh conditions will exist for the development of resistance. To reduce pathogenicity and biofilm formation, newly synthesized analogs of imidazolyl (8n) and previously synthesized analogs (8a-8m) with a similar backbone [the 5-(imidazolyl-methyl) thiazolidinediones] were tested against pyoverdine and pyocyanin production, protease activity, and biofilm formation. Compared to the positive control group, the best compounds reduced the production of pyoverdine (8n) by 89.57% and pyocyanin (8i) by 22.68%, and protease activity (8n) by 2.80% for PAO1 strain, at a concentration of 10 µM. Moreover, the biofilm formation assay showed a reduction of 87.94% (8i) for PAO1, as well as 30.53% (8d) and 44.65% (8m) for 1074 and 1707 strains, respectively. The compounds used in this study did not show any toxicity in the human dermal fibroblasts and 4T1 cells (viability higher than 90%). The in silico study of these compounds revealed that their antivirulence activity could be due to their interaction with the PqsR, PqsE, and LasR receptors.


Subject(s)
Pseudomonas aeruginosa , Thiazolidinediones , Humans , Pyocyanine/pharmacology , Quorum Sensing , Biofilms , Anti-Bacterial Agents/pharmacology , Virulence Factors , Thiazolidinediones/pharmacology , Peptide Hydrolases/pharmacology , Bacterial Proteins/pharmacology
10.
Arch Pharm (Weinheim) ; 355(10): e2200158, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35833485

ABSTRACT

The urease enzyme, a metalloenzyme having Ni2+ ions, is recognized in some bacteria, fungi, and plants. Particularly, it is vital to the progress of infections induced by pathogenic microbes, such as Proteus mirabilis and Helicobacter pylori. Herein, we reported the synthesis of a series of tetrahydropyrimidine derivatives and evaluated their antiurease activity. Finally, quantitative and qualitative analyses of the derivatives were performed via in silico studies. Urease inhibitory activity was determined as the reaction of H. pylori urease with different concentrations of compounds, and thiourea was used as a standard compound. Docking and dynamics methodologies were applied to study the interactions of the best compounds with the amino acids in the active site. All compounds showed good to excellent antiurease activity. The potent compounds were not cytotoxic against the HUVEC normal cell line. Based on the docking study, compound 4e with the highest urease inhibitory activity (IC50 = 6.81 ± 1.42 µM) showed chelates with both Ni2+ ions of the urease active site. Further, compound 4f displayed a very good inhibitory activity (IC50 = 8.45 ± 1.64 µM) in comparison to thiourea (IC50 = 22.03 ± 1.24 µM). The molecular docking and dynamics simulation results were correlated with the in vitro assay results. Moreover, the derivatives 4a-n followed Lipinski's rule-of-five and had drug-likeness properties.


Subject(s)
Helicobacter pylori , Metalloproteins , Amino Acids , Enzyme Inhibitors/chemistry , Metalloproteins/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Thiourea/pharmacology , Urease
11.
Biomed Res Int ; 2021: 6380336, 2021.
Article in English | MEDLINE | ID: mdl-34912894

ABSTRACT

Sortase A (SrtA) is an enzyme that catalyzes the attachment of proteins to the cell wall of Gram-positive bacterial membrane, preventing the spread of pathogenic bacterial strains. Here, one class of oxadiazole compounds was distinguished as an efficient inhibitor of SrtA via the "S. aureus Sortase A" substrate-based virtual screening. The current study on 3D-QSAR was done by utilizing preparation of the structure in the Schrödinger software suite and an assessment of 120 derivatives with the crystal structure of 1,2,4-oxadiazole which was extracted from the PDB data bank. The docking operation of the best compound in terms of pMIC (pMIC = 2.77) was done to determine the drug likeliness and binding form of 1,2,4-oxadiazole derivatives as antibiotics in the active site. Using the kNN-MFA way, seven models of 3D-QSAR were created and amongst them, and one model was selected as the best. The chosen model based on q 2 (pred_r 2) and R 2 values related to the sixth factor of PLS illustrates better and more acceptable external and internal predictions. Values of crossvalidation (pred_r 2), validation (q 2), and F were observed 0.5479, 0.6319, and 179.0, respectively, for a test group including 24 molecules and the training group including 96 molecules. The external reliability outcomes showed that the acceptable and the selective 3D-QSAR model had a high predictive potential (R 2 = 0.9235) which was confirmed by the Y-randomization test. Besides, the model applicability domain was described successfully to validate the estimation of the model.


Subject(s)
Aminoacyltransferases/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Catalytic Domain/physiology , Cell Wall/metabolism , Cysteine Endopeptidases , Quantitative Structure-Activity Relationship , Reproducibility of Results , Staphylococcus aureus/metabolism
12.
Front Bioeng Biotechnol ; 9: 732461, 2021.
Article in English | MEDLINE | ID: mdl-34858953

ABSTRACT

Antibiotic resistant microorganisms have become an enormous global challenge, and are predicted to cause hundreds of millions of deaths. Therefore, the search for novel/alternative antimicrobial agents is a grand global challenge. Cellulose is an abundant biopolymer with the advantages of low cost, biodegradability, and biocompatibility. With the recent growth of nanotechnology and nanomedicine, numerous researchers have investigated nanofibril cellulose to try to develop an anti-bacterial biomaterial. However, nanofibril cellulose has no inherent antibacterial activity, and therefore cannot be used on its own. To empower cellulose with anti-bacterial properties, new efficient nanomaterials have been designed based on cellulose-based nanofibrils as potential wound dressings, food packaging, and for other antibacterial applications. In this review we summarize reports concerning the therapeutic potential of cellulose-based nanofibrils against various bacterial infections.

13.
Bioorg Chem ; 115: 105162, 2021 10.
Article in English | MEDLINE | ID: mdl-34314919

ABSTRACT

A newly designed series of imidazolyl-methyl- l-2,4-thiazolidinediones 9 (a-m) were synthesized and In Silico studies were carried out to rationalize their anti-diabetic activity. Generally, all newly synthesized thiazolidinediones had anti-hyperglycemic activity compared with a diabetic-control group, without toxicity in 3T3 cells (viability ≥ 90%). These studies revealed that the compounds 9e and 9b (11∗10-6mol/kg) lowered blood glucose more effectively when compared to pioglitazone at the same dose. Following the administration of compound 9e, no weight gains or any serious side effects on liver and pancreas were observed. Moreover, the glucose consumption assay results showed a significant glucose-lowering effect (p < 0.001) in HepG2 cells, which were exposed to 11 mM of glucose at concentrations of 1.25-10 mM of compound 9e. Also, the PPAR-γ gene expression study revealed that pioglitazone and 9e showed similar behavior relative to the control group.


Subject(s)
Drug Design , Hypoglycemic Agents/chemical synthesis , Thiazolidinediones/chemistry , 3T3 Cells , Animals , Binding Sites , Catalytic Domain , Cell Survival/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Glucose/metabolism , Humans , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liver/drug effects , Liver/metabolism , Male , Mice , Molecular Docking Simulation , PPAR gamma/agonists , PPAR gamma/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pioglitazone/pharmacology , Rats , Structure-Activity Relationship , Thiazolidinediones/metabolism , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use
14.
Int J Pharm ; 605: 120822, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34182039

ABSTRACT

Due to the high frequency and mortality of breast cancer, developing efficient targeted drug delivery systems for frightening against this malignancy is among cancer research priorities. The aim of this study was to synthesize a targeted micellar formulation of docetaxel (DTX) using DTX, folic acid (FA) and polyethylene glycol (PEG) conjugates as building blocks. In the current study, two therapeutic polymers consisting of FA-PEG-DTX and PEG-DTX conjugates were synthesized and implemented to form folate-targeted and non-targeted micelles. Dissipative particle dynamics (DPD) method was used to simulate the behavior of the nanoparticle. The anti-cancer drug, DTX was loaded in to the micelles via solvent switching method in order to increase its solubility and stability. The cytotoxicity of the targeted and non-targeted formulations was evaluated against 4T1 and CHO cell lines. In vivo therapeutic efficiency was studied using ectopic tumor model of metastatic breast cancer, 4T1, in Female BALB/c mice. The successful synthesis of therapeutic polymers, FA-PEG-DTX and PEG-DTX were confirmed implementing 1HNMR spectral analysis. The size of DTX-loaded non-targeted and targeted micelles were 176.3 ± 8.3 and 181 ± 10.1 nm with PDI of 0.23 and 0.17, respectively. Loading efficiencies of DTX in non-targeted and targeted micelles were obtained to be 85% and 82%, respectively. In vitro release study at pH = 7.4 and pH = 5.4 showed a controlled and continuous drug release for both formulations, that was faster at pH = 5.4 (100% drug release within 120 h) than at pH = 7.4 (80% drug release within 150 h). The targeted formulation showed a significant higher cytotoxicity against 4T1 breast cancer cells (high expression of folate receptor) within the range of 12.5 to 200 µg/mL in comparison with no-targeted one. However, there was no significant difference between the cytotoxicity of the targeted and non-targeted formulations against CHO cell line as low-expressed cell line. In accordance with in vitro investigation, in vivo studies verified the ideal anti-tumor efficacy of the targeted formulation compared to Taxotere and non-targeted formulation. Based on the obtained data, FA-targeted DTX-loaded nano-micelles significantly increased the therapeutic efficacy of DTX and therefore can be considered as a new potent platform for breast cancer chemotherapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Docetaxel , Drug Carriers/therapeutic use , Female , Folic Acid/therapeutic use , Humans , Mice , Mice, Inbred BALB C , Micelles , Polyethylene Glycols/therapeutic use
15.
EXCLI J ; 20: 863-878, 2021.
Article in English | MEDLINE | ID: mdl-34121975

ABSTRACT

Colorectal cancer (CRC) is an important cause of cancer-related mortality. Aberrant activation of the renin-angiotensin system (RAS) is reported to be associated with poor clinical outcomes in patients with CRC. This study was designed to explore the anti-tumor effects of the angiotensin receptor blocker Candesartan either alone or in combination with 5-FU in in vitro and in vivo models of CRC. The cytotoxic effects of Candesartan were assessed using the MTT assay in two colorectal cancer cell lines (CT-26 and SW-480). To investigate the potential regulatory role of Candesartan on tumor growth, apoptosis, and migration, the expression levels of Cyclin D1, Survivin, MMP3, MMP9, and E-cadherin mRNAs were evaluated. The oxidant/antioxidant balance was also examined by determining the levels of MDA, thiols, SOD, and CAT. We used a xenograft model of colon cancer to investigate the effects of Candesartan alone, or in combination with 5-FU, on tumor growth following histological staining (Hematoxylin & Eosin and Masson trichrome staining) and biochemical studies as well as gene expression analyses by RT-PCR and western blotting. Candesartan suppressed tumor cell proliferation and migration by modulating Cyclin D1, MMP3/9, and E-cadherin. Treatment with Candesartan either alone, or in combination with 5-FU decreased tumor size in the mouse model, and also increased the level of oxidative markers MDA and reduced CAT, SOD, and thiols. Histological evaluation showed that Candesartan increased tumor necrosis, reduced tumor density and attenuated collagen deposition reducing tumor fibrosis in tumor xenograft. Candesartan, an inhibitor of the RAS, when used in combination with 5-FU reduced tumor growth by inhibiting fibrosis and inducing ROS production, supporting further clinical studies on this therapeutic approach for treatment of CRC.

16.
Adv Exp Med Biol ; 1308: 91-100, 2021.
Article in English | MEDLINE | ID: mdl-33861438

ABSTRACT

Curcuminis a polyphenol with anti-inflammatory and antioxidative properties, found primarily in turmeric, a flowering plant of the ginger family. Among its numerous medical uses, curcumin has been used in the management of metabolic syndrome, and inflammatory conditions such as artrhritis, anxiety and hyperlipidemia. In this paper, we used molecular docking tools to assess the affinity of four curcumin derivatives (Curcumin, Cyclocurcumin, Demethoxycurcumin, Bisdemethoxycurcumin) as well as the endogenous ligand phosphorylcholine to C-reactive protein (CRP), a sensitive marker of systemic inflammation. Our results showed that curcumin interacts through H bond with CRP at GLN 150 and ASP 140. Similar H bond interactions were found for each of the four curcumin derivatives with CRP. Moreover, a molecular dynamic simulation were performed to further establish the interaction between CRP and the ligands in atomic details using the Nanoscale Molecular Dynamics (NAMD) and CHARMM27 force field. Importantly, our results suggest the possible interaction between curcumin and curcurmin related molecules with CRP, thus showing an important regulatory function with plausible applications in inflammatory and oxidative processes in diseases.


Subject(s)
Curcumin , Anti-Inflammatory Agents , C-Reactive Protein , Curcuma , Molecular Docking Simulation
17.
Adv Exp Med Biol ; 1308: 451-499, 2021.
Article in English | MEDLINE | ID: mdl-33861456

ABSTRACT

Centella asiatica (CA) or Gotu cola is an herbal plant from the Apiaceae family with a long history of usage in different traditional medicines. It has long been used for the treatment of various ailments such as central nervous system (CNS), skin and gastrointestinal disorders especially in the Southeast Asia. This chapter focused on the phytochemical constituent and pharmacological activities of CA based on preclinical and clinical studies. Additionally, botanical description and distribution, traditional uses, interactions, and safety issues are reviewed. Electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies on the pharmacological activities of CA. Approximately, 124 chemical compounds including triterpenoids, polyphenolic compounds, and essential oils have been isolated and identified from CA. Ethnomedicinal applications of CA mostly include treatment of gastrointestinal diseases, wounds, nervous system disorders, circulatory diseases, skin problems, respiratory ailments, diabetes and sleep disorders in various ethnobotanical practices. Pharmacological studies revealed a wide range of beneficial effects of CA on CNS, cardiovascular, lung, liver, kidney, gastrointestinal, skin, and endocrine system. Among them, neuroprotective activity, wound healing and treatment of venous insufficiency, as well as antidiabetic activity seem to be more frequently reported. At the moment, considering various health benefits of CA, it is marketed as an oral supplement as well as a topical ingredient in some cosmetic products. Additional preclinical studies and particularly randomized controlled trials are needed to clarify the therapeutic roles of CA.


Subject(s)
Centella , Triterpenes , Ethnobotany , Ethnopharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Triterpenes/therapeutic use
18.
EXCLI J ; 20: 601-613, 2021.
Article in English | MEDLINE | ID: mdl-33883985

ABSTRACT

Transforming Growth Factor-beta (TGF-ß) is dysregulated in colorectal cancer and there is growing evidence that it is associated with a poor prognosis and chemo-resistance in several malignances, including CRC. In this study we have explored the therapeutic potential of targeting TGF-ß using Tranilast in colon cancer. The anti-proliferative activity of Tranilast was evaluated in 2- and 3-dimensional cells. We used a xenograft model of colon cancer to investigate the activity of Tranilast alone or in combination with 5-FU on tumor growth using histological staining and biochemical studies, as well as gene expression analyses using RT-PCR and Western blotting. Tranilast alone or in combination with 5-FU inhibited tumor growth and was associated with a reduction of TGF-ß expression and CD31 positive endothelial cells. Histological evaluation showed that Tranilast increased tumor necrosis and reduced tumor density and angiogenesis. Tranilast increased MDA and ROS production. It was also found that Tranilast reduced total thiol concentration and reduced SOD and catalase activity. Tranilast plus 5-FU was also found to attenuate collagen deposition, reducing tumor fibrosis in tumor xenografts. Our results show that Tranilast, a TGF inhibitor, in combination with 5-FU reduces tumor growth by inhibiting fibrosis and inducting ROS, thus supporting this therapeutic approach in CRC treatment.

19.
Anticancer Agents Med Chem ; 21(17): 2379-2384, 2021.
Article in English | MEDLINE | ID: mdl-33596812

ABSTRACT

BACKGROUND: Pyrvinium Pamoate (PP) is an old drug approved by the FDA for the treatment of pinworm infections. Recently, it has been introduced as an anti-tumor agent, however, low aqueous solubility severely limits its potential effects. In this study, we developed a liposomal formulation of pyrvinium pamoate to investigate its in vitro cytotoxicity and in vivo efficacy against melanoma cells. MATERIALS & METHODS: As drug carriers, liposomes were fabricated using the thin-film method. PP was encapsulated within the liposomes using a remote loading method. We evaluated the morphology, particle size, and Zeta potential of the liposomes. Additionally, High-Performance Liquid Chromatography (HPLC) was employed for qualitative and quantitative analysis. Then we investigated our liposomal PP for its in vitro cytotoxicity as well as the tumor growth inhibition in C57BL/6 mice bearing B16F0 melanoma tumors. RESULTS: Based on the analytical result, the liposomal drug delivery system is a homogeneous and stable colloidal suspension of PP particles. The images of Atomic force microscopy and particle size data showed that all the prepared nanocarriers were spherical with a diameter of approximately 101 nm. According to both in vitro and in vivo studies, nanoliposomal PP exhibited an improved anti-proliferative potential against B16F10 melanoma tumor compared to free PP. CONCLUSION: Liposomal encapsulation improves the water solubility of PP and enhances its anti-cancer activity.


Subject(s)
Antineoplastic Agents/pharmacology , Disease Models, Animal , Melanoma, Experimental/drug therapy , Nanoparticles/chemistry , Pyrvinium Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Female , Liposomes/chemistry , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Pyrvinium Compounds/chemistry , Tumor Cells, Cultured
20.
Arch Med Sci ; 16(6): 1432-1439, 2020.
Article in English | MEDLINE | ID: mdl-33224343

ABSTRACT

INTRODUCTION: Statins are known to lower CRP, and this reduction has been suggested to contribute to the established efficacy of these drugs in reducing cardiovascular events and outcomes. However, the exact mechanism underlying the CRP-lowering effect of statins remains elusive. METHODS: In order to test the possibility of direct interaction, we performed an in silico study by testing the orientation of the respective ligands (statins) and phosphorylcholine (the standard ligand of CRP) in the CRP active site using Molecular Operating Environment (MOE) software. RESULTS: Docking experiments showed that all statins could directly interact with CRP. Among statins, rosuvastatin had the strongest interaction with CRP (pKi = 16.14), followed by fluvastatin (pKi = 15.58), pitavastatin (pKi = 15.26), atorvastatin (pKi = 14.68), pravastatin (pKi = 13.95), simvastatin (pKi = 7.98) and lovastatin (pKi = 7.10). According to the above-mentioned results, rosuvastatin, fluvastatin, pitavastatin and atorvastatin were found to have stronger binding to CRP compared with the standard ligand phosphocholine (pKi = 14.55). CONCLUSIONS: This finding suggests a new mechanism of interaction between statins and CRP that could be independent of the putative cholesterol-lowering activity of statins.

SELECTION OF CITATIONS
SEARCH DETAIL
...