Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(3): e0120416, 2015.
Article in English | MEDLINE | ID: mdl-25767879

ABSTRACT

Tau is an intrinsically disordered protein (IDP) whose primary physiological role is to stabilize microtubules in neuronal axons at all stages of development. In Alzheimer's and other tauopathies, tau forms intracellular insoluble amyloid aggregates known as neurofibrillary tangles, a process that appears in many cases to be preceded by hyperphosphorylation of tau monomers. Understanding the shift in conformational bias induced by hyperphosphorylation is key to elucidating the structural factors that drive tau pathology, however, as an IDP, tau is not amenable to conventional structural characterization. In this work, we employ a straightforward technique based on Time-Resolved ElectroSpray Ionization Mass Spectrometry (TRESI-MS) and Hydrogen/Deuterium Exchange (HDX) to provide a detailed picture of residual structure in tau, and the shifts in conformational bias induced by hyperphosphorylation. By comparing the native and hyperphosphorylated ensembles, we are able to define specific conformational biases that can easily be rationalized as enhancing amyloidogenic propensity. Representative structures for the native and hyperphosphorylated tau ensembles were generated by refinement of a broad sample of conformations generated by low-computational complexity modeling, based on agreement with the TRESI-HDX profiles.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Models, Molecular , Protein Conformation , Tauopathies/pathology , tau Proteins/metabolism , Deuterium Exchange Measurement , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Kinetics , Mass Spectrometry/methods , Microscopy, Electron, Transmission , Phosphorylation , tau Proteins/chemistry
2.
Article in English | MEDLINE | ID: mdl-24316844

ABSTRACT

The response-regulatory protein LytR belongs to a family of transcription factors involved in the regulation of important virulence factors in pathogenic bacteria. The protein consists of a receiver domain and an effector domain, which play an important role in controlled cell death and lysis. The LytR receiver domain (LytR(N)) has been overexpressed, purified and crystallized using the sitting-drop and hanging-drop vapour-diffusion methods. The crystals grew as needles, with unit-cell parameters a = b = 84.82, c = 157.3 Å, α = ß = 90, γ = 120°. LytR(N) crystallized in space group P6122 and the crystals diffracted to a maximum resolution of 2.34 Å. Based on the Matthews coefficient (V(M) = 5.44 Å(3) Da(-1)), one molecule is estimated to be present in the asymmetric unit.


Subject(s)
Bacterial Proteins/chemistry , Staphylococcus aureus/chemistry , Transcription Factors/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...