Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 3(23): 3493-7, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-26290978

ABSTRACT

Surface-selective sum frequency generation (SFG) spectroscopy has been previously shown to benefit from a finite time delay between two input laser pulses, which suppresses the nonresonant background and improves spectral resolution. Here we demonstrate another consequence of the time delay in SFG: depending on the magnitude of the delay, nearby resonances (e.g., vibrational modes) can "flip" their relative phase, i.e., appear either in-phase or out-of-phase with one another, resulting in either constructive or destructive interference in SFG spectra. This is significant for interpretation of the SFG spectra, in particular because the sign of the resonant amplitude provides the absolute molecular orientation (up vs down) of the vibrational chromophore. We present results and model calculations for symmetric and asymmetric CH-stretch modes of the methyl-terminated Si(111) surface, showing that the phase flip occurs when the delay matches half-cycle of the difference frequency between the two modes.

2.
Nature ; 474(7350): 192-5, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21654801

ABSTRACT

The air-water interface is perhaps the most common liquid interface. It covers more than 70 per cent of the Earth's surface and strongly affects atmospheric, aerosol and environmental chemistry. The air-water interface has also attracted much interest as a model system that allows rigorous tests of theory, with one fundamental question being just how thin it is. Theoretical studies have suggested a surprisingly short 'healing length' of about 3 ångströms (1 Å = 0.1 nm), with the bulk-phase properties of water recovered within the top few monolayers. However, direct experimental evidence has been elusive owing to the difficulty of depth-profiling the liquid surface on the ångström scale. Most physical, chemical and biological properties of water, such as viscosity, solvation, wetting and the hydrophobic effect, are determined by its hydrogen-bond network. This can be probed by observing the lineshape of the OH-stretch mode, the frequency shift of which is related to the hydrogen-bond strength. Here we report a combined experimental and theoretical study of the air-water interface using surface-selective heterodyne-detected vibrational sum frequency spectroscopy to focus on the 'free OD' transition found only in the topmost water layer. By using deuterated water and isotopic dilution to reveal the vibrational coupling mechanism, we find that the free OD stretch is affected only by intramolecular coupling to the stretching of the other OD group on the same molecule. The other OD stretch frequency indicates the strength of one of the first hydrogen bonds encountered at the surface; this is the donor hydrogen bond of the water molecule straddling the interface, which we find to be only slightly weaker than bulk-phase water hydrogen bonds. We infer from this observation a remarkably fast onset of bulk-phase behaviour on crossing from the air into the water phase.


Subject(s)
Air/analysis , Water/chemistry , Atmosphere/chemistry , Deuterium/chemistry , Hydrogen Bonding , Models, Chemical , Models, Molecular , Oxygen/chemistry , Vibration , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...