Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Lang ; 121(2): 130-43, 2012 May.
Article in English | MEDLINE | ID: mdl-21724244

ABSTRACT

In a neuroimaging study focusing on young bilinguals, we explored the brains of bilingual and monolingual babies across two age groups (younger 4-6 months, older 10-12 months), using fNIRS in a new event-related design, as babies processed linguistic phonetic (Native English, Non-Native Hindi) and non-linguistic Tone stimuli. We found that phonetic processing in bilingual and monolingual babies is accomplished with the same language-specific brain areas classically observed in adults, including the left superior temporal gyrus (associated with phonetic processing) and the left inferior frontal cortex (associated with the search and retrieval of information about meanings, and syntactic and phonological patterning), with intriguing developmental timing differences: left superior temporal gyrus activation was observed early and remained stably active over time, while left inferior frontal cortex showed greater increase in neural activation in older babies notably at the precise age when babies' enter the universal first-word milestone, thus revealing a first-time focal brain correlate that may mediate a universal behavioral milestone in early human language acquisition. A difference was observed in the older bilingual babies' resilient neural and behavioral sensitivity to Non-Native phonetic contrasts at a time when monolingual babies can no longer make such discriminations. We advance the "Perceptual Wedge Hypothesis" as one possible explanation for how exposure to greater than one language may alter neural and language processing in ways that we suggest are advantageous to language users. The brains of bilinguals and multilinguals may provide the most powerful window into the full neural "extent and variability" that our human species' language processing brain areas could potentially achieve.


Subject(s)
Brain Mapping/methods , Brain/physiology , Language Development , Multilingualism , Phonetics , Spectroscopy, Near-Infrared/methods , Humans , Infant , Speech Perception/physiology
2.
Ann N Y Acad Sci ; 911: 127-50, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10911871

ABSTRACT

Layers II and V of the entorhinal cortex (EC) occupy a privileged anatomical position in the temporal lobe memory system that allows them to gate the main flow of information in and out of the hippocampus, respectively. In vivo studies have shown that layer II of the EC is a robust generator of theta as well as gamma activity. Theta may also be present in layer V, but the layer V network is particularly prone to genesis of short-lasting high-frequency oscillations ("ripples"). Interestingly, in vitro studies have shown that EC layers II and V, but not layer III, have the potential to act as independent pacemakers of population oscillatory activity. Moreover, it has also been shown that subgroups of principal neurons both within layers II and V, but not layer III, are endowed with autorhythmic properties. These are characterized by subthreshold oscillations where the depolarizing phase is driven by the activation of "persistent" Na+ channels. We propose that the oscillatory properties of layer II and V neurons and local circuits are responsible for setting up the proper temporal dynamics for the coordination of the multiple sensory inputs that converge onto EC and thus help to generate sensory representations and memory encoding.


Subject(s)
Entorhinal Cortex/physiology , Neurons/physiology , Animals , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Entorhinal Cortex/cytology , Entorhinal Cortex/drug effects , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Pathways/drug effects , Neural Pathways/physiology , Neurons/drug effects , Oscillometry
3.
J Neurophysiol ; 83(5): 2562-79, 2000 May.
Article in English | MEDLINE | ID: mdl-10805658

ABSTRACT

Various subsets of brain neurons express a hyperpolarization-activated inward current (I(h)) that has been shown to be instrumental in pacing oscillatory activity at both a single-cell and a network level. A characteristic feature of the stellate cells (SCs) of entorhinal cortex (EC) layer II, those neurons giving rise to the main component of the perforant path input to the hippocampal formation, is their ability to generate persistent, Na(+)-dependent rhythmic subthreshold membrane potential oscillations, which are thought to be instrumental in implementing theta rhythmicity in the entorhinal-hippocampal network. The SCs also display a robust time-dependent inward rectification in the hyperpolarizing direction that may contribute to the generation of these oscillations. We performed whole cell recordings of SCs in in vitro slices to investigate the specific biophysical and pharmacological properties of the current underlying this inward rectification and to clarify its potential role in the genesis of the subthreshold oscillations. In voltage-clamp conditions, hyperpolarizing voltage steps evoked a slow, noninactivating inward current, which also deactivated slowly on depolarization. This current was identified as I(h) because it was resistant to extracellular Ba(2+), sensitive to Cs(+), completely and selectively abolished by ZD7288, and carried by both Na(+) and K(+) ions. I(h) in the SCs had an activation threshold and reversal potential at approximately -45 and -20 mV, respectively. Its half-activation voltage was -77 mV. Importantly, bath perfusion with ZD7288, but not Ba(2+), gradually and completely abolished the subthreshold oscillations, thus directly implicating I(h) in their generation. Using experimentally derived biophysical parameters for I(h) and the low-threshold persistent Na(+) current (I(NaP)) present in the SCs, a simplified model of these neurons was constructed and their subthreshold electroresponsiveness simulated. This indicated that the interplay between I(NaP) and I(h) can sustain persistent subthreshold oscillations in SCs. I(NaP) and I(h) operate in a "push-pull" fashion where the delay in the activation/deactivation of I(h) gives rise to the oscillatory process.


Subject(s)
Biological Clocks/physiology , Entorhinal Cortex/physiology , Neurons/physiology , Animals , Barium/pharmacology , Buffers , Cardiovascular Agents/pharmacology , Cesium/pharmacology , Dose-Response Relationship, Drug , Electric Stimulation , Entorhinal Cortex/drug effects , In Vitro Techniques , Ion Transport/drug effects , Ion Transport/physiology , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Memory/physiology , Models, Neurological , Neurons/drug effects , Patch-Clamp Techniques , Pyrimidines/pharmacology , Rats , Rats, Long-Evans , Tetrodotoxin/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...