Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Virulence ; 14(1): 2215602, 2023 12.
Article in English | MEDLINE | ID: mdl-37221835

ABSTRACT

BACKGROUND: Mycobacterium abscessus subspecies massiliense (M. massiliense) is increasingly recognized as an emerging bacterial pathogen, particularly in cystic fibrosis (CF) patients and CF centres' respiratory outbreaks. We characterized genomic and phenotypic changes in 15 serial isolates from two CF patients (1S and 2B) with chronic pulmonary M. massiliense infection leading to death, as well as four isolates from a CF centre outbreak in which patient 2B was the index case. RESULTS: Comparative genomic analysis revealed the mutations affecting growth rate, metabolism, transport, lipids (loss of glycopeptidolipids), antibiotic susceptibility (macrolides and aminoglycosides resistance), and virulence factors. Mutations in 23S rRNA, mmpL4, porin locus and tetR genes occurred in isolates from both CF patients. Interestingly, we identified two different spontaneous mutation events at the mycobacterial porin locus: a fusion of two tandem porin paralogs in patient 1S and a partial deletion of the first porin paralog in patient 2B. These genomic changes correlated with reduced porin protein expression, diminished 14C-glucose uptake, slower bacterial growth rates, and enhanced TNF-α induction in mycobacteria-infected THP-1 human cells. Porin gene complementation of porin mutants partly restored 14C-glucose uptake, growth rate and TNF-α levels to those of intact porin strains. CONCLUSIONS: We hypothesize that specific mutations accumulated and maintained over time in M. massiliense, including mutations shared among transmissible strains, collectively lead to more virulent, host adapted lineages in CF patients and other susceptible hosts.


Subject(s)
Cystic Fibrosis , Mycobacterium abscessus , Mycobacterium , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/microbiology , Genomics , Glucose , Lung , Mutation , Mycobacterium/genetics , Mycobacterium abscessus/genetics , Tumor Necrosis Factor-alpha/genetics , Porins/genetics , Porins/metabolism
2.
Antimicrob Agents Chemother ; 66(11): e0053922, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36197094

ABSTRACT

Mycobacterium abscessus is an emerging nontuberculous mycobacterium (NTM) pathogen infecting susceptible people with cystic fibrosis (CF) and non-CF bronchiectasis. Here, we demonstrated the activity of an FDA-approved drug, disulfiram, against drug-susceptible and drug-resistant M. abscessus strains utilizing in vitro and intracellular macrophage assays and a zebrafish embryo infection model. These data demonstrate effective antimicrobial activity of disulfiram against M. abscessus infection in vivo and strongly support further study of disulfiram in human NTM infections.


Subject(s)
Cystic Fibrosis , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Animals , Zebrafish , Disulfiram/pharmacology , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria , Cystic Fibrosis/microbiology
3.
J Clin Microbiol ; 60(4): e0169421, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35313731

ABSTRACT

Clarithromycin resistance in Mycobacterium abscessus subsp. abscessus, massiliense, and bolletii occurs through induction of erm(41) or mutations in rrl (23S rRNA) genes. Phenotypic detection of clarithromycin resistance is hindered by the need for extended incubation as well as co-occurrence of mixed populations of M. abscessus with different susceptibility profiles. We developed a quantitative EvaGreen-based droplet digital PCR (ddPCR) scheme for rapid detection of full-length or truncated erm(41) and a probe based ddPCR screening assay for assessment of 23S rRNA rrl mutational resistance. We tested 100 M. abscessus strains, synthetic mixes with different susceptibility profiles, and 13 positive MGIT samples. Truncated and full-length erm(41) genes were detected in 27/100 and 73/100 strains and 4/13 and 9/13 MGIT samples, respectively yielding a sensitivity and specificity of 100%. Clarithromycin resistance mutations in rrl were detected in 26/100 isolates, i.e., A2058G (18/100), A2058C (7/100), and A2059G (1/100), and in 3/13 MGIT samples, i.e., A2058G (2/13) and A2059G (1/13). A screening assay of rrl ddPCR (A2058A/A2058G probes) showed 100% sensitivity in detecting the wild type or A2058G mutation as well as identifying samples requiring further testing. Upon inclusion of additional ddPCR assays, we were able to detect A2058C and A2059G clarithromycin resistance-conferring mutations in the rrl gene. Our ddPCR scheme can differentiate between full-length and truncated erm(41) and identify clarithromycin resistance-conferring mutations in the rrl gene from clinical isolates and positive MGIT samples as well as deconvolute and quantitate mixed populations of M. abscessus with different clarithromycin resistance traits.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Anti-Bacterial Agents/pharmacology , Clarithromycin/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/genetics , RNA, Ribosomal, 23S/genetics
4.
Virulence ; 11(1): 1656-1673, 2020 12.
Article in English | MEDLINE | ID: mdl-33356838

ABSTRACT

Summary: We characterized Mycobacterium bovis BCG isolates found in lung and brain samples from a previously vaccinated patient with IFNγR1 deficiency. The isolates collected displayed distinct genomic and phenotypic features consistent with host adaptation and associated changes in antibiotic susceptibility and virulence traits. Background: We report a case of a patient with partial recessive IFNγR1 deficiency who developed disseminated BCG infection after neonatal vaccination (BCG-vaccine). Distinct M. bovis BCG-vaccine derived clinical strains were recovered from the patient's lungs and brain. Methods: BCG strains were phenotypically (growth, antibiotic susceptibility, lipid) and genetically (whole genome sequencing) characterized. Mycobacteria cell infection models were used to assess apoptosis, necrosis, cytokine release, autophagy, and JAK-STAT signaling. Results: Clinical isolates BCG-brain and BCG-lung showed distinct Rv0667 rpoB mutations conferring high- and low-level rifampin resistance; the latter displayed clofazimine resistance through Rv0678 gene (MarR-like transcriptional regulator) mutations. BCG-brain and BCG-lung showed mutations in fadA2, fadE5, and mymA operon genes, respectively. Lipid profiles revealed reduced levels of PDIM in BCG-brain and BCG-lung and increased TAGs and Mycolic acid components in BCG-lung, compared to parent BCG-vaccine. In vitro infected cells showed that the BCG-lung induced a higher cytokine release, necrosis, and cell-associated bacterial load effect when compared to BCG-brain; conversely, both strains inhibited apoptosis and altered JAK-STAT signaling. Conclusions: During a chronic-disseminated BCG infection, BCG strains can evolve independently at different sites likely due to particular microenvironment features leading to differential antibiotic resistance, virulence traits resulting in dissimilar responses in different host tissues.


Subject(s)
BCG Vaccine/adverse effects , BCG Vaccine/immunology , Mycobacterium bovis/immunology , Mycobacterium bovis/pathogenicity , Receptors, Interferon/genetics , Tuberculosis/blood , Tuberculosis/diagnosis , Animals , Anti-Bacterial Agents/pharmacology , BCG Vaccine/administration & dosage , Brain/microbiology , Cattle , Child, Preschool , Drug Resistance, Bacterial , Humans , Lung/microbiology , Male , Mutation , Mycobacterium bovis/drug effects , Mycobacterium bovis/genetics , Receptors, Interferon/deficiency , Vaccination , Virulence , Interferon gamma Receptor
5.
Open Forum Infect Dis ; 6(12): ofz484, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31807607

ABSTRACT

OBJECTIVE: Although disseminated nontuberculous mycobacterial infection is attributed to defects in the interleukin (IL)-12/interferon-γ circuit, the immunophenotype of idiopathic pulmonary nontuberculous mycobacterial (PNTM) disease is not well defined. METHOD: We phenotyped Th1, Th2, Th17, and Treg cytokines and colony-stimulating factor production from patients with idiopathic PNTM disease. Data were compared with healthy donors, cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) patients with PNTM disease. Both supernatant cytokine production and intracellular cytokines expressed by various leukocyte subpopulations following mitogen and antigen stimulation were assayed by electrochemiluminescence-based multiplex immunoassay and flow cytometry, respectively. RESULTS: Regardless of antigen or mitogen stimulation, neither intracellular nor extracellular Th1, Th2, and Treg cytokine levels differed between patients and controls. Th17 cells and IL-17A levels were lower in idiopathic PNTM patients, whereas monocyte granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in response to NTM stimulation was higher compared with healthy donors. Besides, distinct cytokine responses following stimulation by Mycobacterium abscessus and Mycobacterium avium were observed consistently within each group. CONCLUSIONS: The IL-12/IFN-γ circuit appeared intact in patients with idiopathic PNTM disease. However, idiopathic PNTM patients had reduced Th17 response and higher mycobacteria-induced monocyte GM-CSF expression.

6.
J Clin Microbiol ; 53(11): 3430-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26269619

ABSTRACT

Members of the Mycobacterium abscessus group (MAG) cause lung, soft tissue, and disseminated infections. The oral macrolides clarithromycin and azithromycin are commonly used for treatment. MAG can display clarithromycin resistance through the inducible erm(41) gene or via acquired mutations in the rrl (23S rRNA) gene. Strains harboring a truncation or a T28C substitution in erm(41) lose the inducible resistance trait. Phenotypic detection of clarithromycin resistance requires extended incubation (14 days), highlighting the need for faster methods to detect resistance. Two real-time PCR-based assays were developed to assess inducible and acquired clarithromycin resistance and tested on a total of 90 clinical and reference strains. A SYBR green assay was designed to distinguish between a full-length and truncated erm(41) gene by temperature shift in melting curve analysis. Single nucleotide polymorphism (SNP) allele discrimination assays were developed to distinguish T or C at position 28 of erm(41) and 23S rRNA rrl gene mutations at position 2058 and/or 2059. Truncated and full-size erm(41) genes were detected in 21/90 and 69/90 strains, respectively, with 64/69 displaying T at nucleotide position 28 and 5/69 containing C at that position. Fifteen isolates showed rrl mutations conferring clarithromycin resistance, including A2058G (11 isolates), A2058C (3 isolates), and A2059G (1 isolate). Targeted sequencing and phenotypic assessment of resistance concurred with molecular assay results. Interestingly, we also noted cooccurring strains harboring an active erm(41), inactive erm(41), and/or acquired mutational resistance, as well as slowly growing MAG strains and also strains displaying an inducible resistance phenotype within 5 days, long before the recommended 14-day extended incubation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clarithromycin/pharmacology , Drug Resistance, Bacterial/genetics , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/drug effects , Real-Time Polymerase Chain Reaction/methods , Bacterial Proteins/genetics , Base Sequence , DNA, Bacterial/genetics , Humans , Lung Diseases/microbiology , Methyltransferases/genetics , Microbial Sensitivity Tests , Nontuberculous Mycobacteria/genetics , Polymorphism, Single Nucleotide , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA , Soft Tissue Infections/microbiology
7.
J Clin Microbiol ; 53(11): 3438-47, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26292297

ABSTRACT

The smooth-to-rough colony morphology shift in Mycobacterium abscessus has been implicated in loss of glycopeptidolipid (GPL), increased pathogenicity, and clinical decline in cystic fibrosis (CF) patients. However, the evolutionary phenotypic and genetic changes remain obscure. Serial isolates from nine non-CF patients with persistent M. abscessus infection were characterized by colony morphology, lipid profile via thin-layer chromatography and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), sequencing of eight genes in the GPL locus, and expression level of fadD23, a key gene involved in the biosynthesis of complex lipids. All 50 isolates were typed as M. abscessus subspecies abscessus and were clonally related within each patient. Rough isolates, all lacking GPL, predominated at later disease stages, some showing variation within rough morphology. While most (77%) rough isolates harbored detrimental mutations in mps1 and mps2, 13% displayed previously unreported mutations in mmpL4a and mmpS4, the latter yielding a putative GPL precursor. Two isolates showed no deleterious mutations in any of the eight genes sequenced. Mixed populations harboring different GPL locus mutations were detected in 5 patients, demonstrating clonal diversification, which was likely overlooked by conventional acid-fast bacillus (AFB) culture methods. Our work highlights applications of MALDI-TOF MS beyond identification, focusing on mycobacterial lipids relevant in virulence and adaptation. Later isolates displayed accumulation of triacylglycerol and reduced expression of fadD23, sometimes preceding rough colony onset. Our results indicate that clonal diversification and a shift in lipid metabolism, including the loss of GPL, occur during chronic lung infection with M. abscessus. GPL loss alone may not account for all traits associated with rough morphology.


Subject(s)
Bacterial Proteins/genetics , Ligases/genetics , Lipid Metabolism/genetics , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/isolation & purification , Aged , Aged, 80 and over , Base Sequence , Bronchiectasis/microbiology , Cystic Fibrosis/microbiology , DNA, Bacterial/genetics , Female , Gene Dosage/genetics , Genome, Bacterial/genetics , Humans , Lipids/genetics , Male , Middle Aged , Multilocus Sequence Typing , Nontuberculous Mycobacteria/classification , Nontuberculous Mycobacteria/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
J Clin Microbiol ; 51(9): 2943-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23804391

ABSTRACT

Mycobacterium abscessus (M. abscessus sensu lato, or the M. abscessus group) comprises three closely related taxa whose taxonomic statuses are under revision, i.e., M. abscessus sensu stricto, Mycobacterium bolletii, and Mycobacterium massiliense. We describe here a simple, robust, and cost-effective PCR-based method for distinguishing among M. abscessus, M. massiliense, and M. bolletii. Based on the M. abscessus ATCC 19977(T) genome, regions that discriminated between M. abscessus and M. massiliense were identified through array-based comparative genomic hybridization. A typing scheme using PCR primers designed for four of these locations was applied to 46 well-characterized clinical isolates comprising 29 M. abscessus, 15 M. massiliense, and 2 M. bolletii isolates previously identified by multitarget sequencing. Interestingly, 2 isolates unequivocally identified as M. massiliense were shown to have a full-length erm(41) gene instead of the expected gene deletion and showed inducible clarithromycin resistance after 14 days. We propose using this PCR-based typing scheme combined with erm(41) PCR for straightforward identification of M. abscessus, M. massiliense, and M. bolletii and the assessment of inducible clarithromycin resistance. This method can be easily integrated into a routine workflow to provide subspecies-level identification within 24 h after isolation of the M. abscessus group.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriological Techniques/methods , Clarithromycin/pharmacology , Drug Resistance, Bacterial , Nontuberculous Mycobacteria/classification , Polymerase Chain Reaction/methods , Comparative Genomic Hybridization , DNA Primers/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial/drug effects , Genetic Variation , Humans , Molecular Sequence Data , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/genetics , Sequence Analysis, DNA
9.
Gene ; 509(1): 142-8, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22967710

ABSTRACT

The detection and identification of bio-threat agents and the study of host-pathogen interactions require a high-resolution detection platform capable of discerning closely related species. Diverse analysis methods are used to identify pathogens, specifically Brucella species or biovars. In this study, we compared four diagnostic approaches including serology-based biochemical test, PCR assay, microarray analysis using a Universal Bio-signature Detection Array (UBDA) and whole genome "deep" sequencing for Brucella organisms including a number of field isolates. We found that although there was frequent agreement among the different tests, some tests gave compound/contradictory results that were a consequence of species diversity due to mixed infections or minor contaminants as measured by UBDA and validated from whole genome sequence. By comparing these analysis techniques, we demonstrate that standard diagnostics used in the field are limited in their ability to identify genomic DNA contaminants in field isolates while UBDA and sequencing analysis are highly sensitive in tracing genomic differences among the isolates.


Subject(s)
Bacteriological Techniques , Brucella/genetics , Brucella/isolation & purification , Genetic Variation , Animals , Bacterial Typing Techniques , Brucella/classification , Brucellosis/diagnosis , Brucellosis/microbiology , Brucellosis/veterinary , Brucellosis, Bovine/diagnosis , Brucellosis, Bovine/microbiology , Cattle , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Genome, Bacterial , Humans , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Principal Component Analysis , Sequence Analysis, DNA , Sus scrofa
10.
BMC Microbiol ; 11: 132, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21672191

ABSTRACT

BACKGROUND: The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs. RESULTS: A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics. CONCLUSIONS: This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of a mixed pathogen sample and can separate hosts and pathogens into their respective phylogenomic relationships. This technology can also differentiate between different species and classify genomes into their known clades. The development of this technology will result in the creation of an integrated biomarker-specific bio-signature, multiple select agent specific detection system.


Subject(s)
Communicable Diseases/diagnosis , Communicable Diseases/etiology , Forensic Medicine/methods , Microarray Analysis/methods , Microbiological Techniques/methods , Animals , Brucella/isolation & purification , Humans
11.
Science ; 309(5731): 134-7, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15994558

ABSTRACT

We report the genome sequence of Theileria parva, an apicomplexan pathogen causing economic losses to smallholder farmers in Africa. The parasite chromosomes exhibit limited conservation of gene synteny with Plasmodium falciparum, and its plastid-like genome represents the first example where all apicoplast genes are encoded on one DNA strand. We tentatively identify proteins that facilitate parasite segregation during host cell cytokinesis and contribute to persistent infection of transformed host cells. Several biosynthetic pathways are incomplete or absent, suggesting substantial metabolic dependence on the host cell. One protein family that may generate parasite antigenic diversity is not telomere-associated.


Subject(s)
Genome, Protozoan , Lymphocytes/parasitology , Protozoan Proteins/genetics , Theileria parva/genetics , Algorithms , Animals , Antigens, Protozoan/genetics , Cattle , Cell Proliferation , Chromosomes/genetics , Conserved Sequence , Enzymes/genetics , Enzymes/metabolism , Genes, Protozoan , Lymphocytes/cytology , Mitochondria/metabolism , Molecular Sequence Data , Organelles/genetics , Organelles/physiology , Plasmodium falciparum/genetics , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sequence Analysis, DNA , Synteny , Telomere/genetics , Theileria parva/growth & development , Theileria parva/pathogenicity , Theileria parva/physiology
12.
Nature ; 419(6906): 512-9, 2002 Oct 03.
Article in English | MEDLINE | ID: mdl-12368865

ABSTRACT

Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.


Subject(s)
Genome, Protozoan , Plasmodium yoelii/genetics , Animals , DNA, Protozoan , Disease Models, Animal , Humans , Malaria/parasitology , Multigene Family , Plasmodium falciparum/genetics , Recombination, Genetic , Rodentia , Sequence Alignment , Sequence Analysis, DNA , Species Specificity , Synteny , Telomere
13.
Nature ; 419(6906): 531-4, 2002 Oct 03.
Article in English | MEDLINE | ID: mdl-12368868

ABSTRACT

The mosquito-borne malaria parasite Plasmodium falciparum kills an estimated 0.7-2.7 million people every year, primarily children in sub-Saharan Africa. Without effective interventions, a variety of factors-including the spread of parasites resistant to antimalarial drugs and the increasing insecticide resistance of mosquitoes-may cause the number of malaria cases to double over the next two decades. To stimulate basic research and facilitate the development of new drugs and vaccines, the genome of Plasmodium falciparum clone 3D7 has been sequenced using a chromosome-by-chromosome shotgun strategy. We report here the nucleotide sequences of chromosomes 10, 11 and 14, and a re-analysis of the chromosome 2 sequence. These chromosomes represent about 35% of the 23-megabase P. falciparum genome.


Subject(s)
DNA, Protozoan , Plasmodium falciparum/genetics , Animals , Chromosomes , Genome, Protozoan , Proteome , Protozoan Proteins/genetics , Sequence Analysis, DNA
14.
Nature ; 419(6906): 498-511, 2002 Oct 03.
Article in English | MEDLINE | ID: mdl-12368864

ABSTRACT

The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.


Subject(s)
Genome, Protozoan , Plasmodium falciparum/genetics , Animals , Chromosome Structures , DNA Repair , DNA Replication , DNA, Protozoan/biosynthesis , DNA, Protozoan/genetics , Evolution, Molecular , Humans , Malaria Vaccines , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Sequence Data , Plasmodium falciparum/immunology , Plasmodium falciparum/metabolism , Plastids/genetics , Proteome , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/physiology , Recombination, Genetic , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...